Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Parametrizing and Projecting a Sphere - Universal Hyperbolic Geometry

Insights into Mathematics via YouTube

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore stereographic and gnomonic projections of a sphere in this 39-minute video lecture on Universal Hyperbolic Geometry. Begin with a review of three-dimensional coordinate systems before delving into rational parametrization of a sphere, analogous to circle parametrization. Examine stereographic projection from the south pole through the equatorial plane and gnomonic projection from the sphere's center through a tangent plane. Discover how gnomonic projection aligns naturally with elliptic geometry, where antipodal points on a sphere are identified. Cover topics including spherical coordinates, algebraic foundations, and the relationship between these projections and elliptic geometry.

Syllabus

Introduction
Stereographic projection
Recall parametrization of a circle
Algebraic underpinnings
Parametrization formula for a sphere
Spherical co-ordinates
Gnomonic projection
Gnomonic projection works more naturally with elliptic geometry

Taught by

Insights into Mathematics

Reviews

Start your review of Parametrizing and Projecting a Sphere - Universal Hyperbolic Geometry

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.