Overview
Syllabus
Intro
What makes modern machine learning word
Predictive models are very powerful!
Automated decision making is very powerf
First setting: data-driven reinforcement lear
Second setting: data-driven model-based optimization
Off-policy RL: a quick primer
What's the problem?
Distribution shift in a nutshell
How do prior methods address this?
Learning with Q-function lower bounds Algorithm
Does the bound hold in practice?
How does CQL compare?
Predictive modeling and design
What's wrong with just doing prediction?
The model-based optimization problem
Uncertainty and extrapolation
What can we do?
Model inversion networks (MINS)
Putting it all together
Experimental results
Some takeaways
Some concluding remarks
Taught by
Simons Institute