Overview
Syllabus
The foundation -- Number Theory 1.
Mathematical Induction -- Number Theory 2.
The division algorithm -- Number Theory 3.
The Greatest Common Divisor -- Number Theory 4.
The Euclidean Algorithm -- Number Theory 5.
Primes and Composites -- Number Theory 6.
Proofs and Conjectures involving primes -- Number Theory 7.
Modular Arithmetic -- Number Theory 8.
Divisibility Rules -- Number Theory 9.
Solving linear congruences -- Number Theory 10.
Chinese Remainder Theorem -- Number Theory 11.
Euler's Theorem -- Number Theory 12.
Euler's Totient Function -- Number Theory 13.
Wilson's Theorem -- Number Theory 14.
Hensel's Lemma -- Number Theory 15.
The order of an integer modulo n -- Number Theory 16.
Primitive Roots -- Number theory 17.
More about primitive roots -- Number Theory 18.
Applications of primitive roots -- Number Theory 19.
Indices (the discrete log) -- Number Theory 20.
Decimal Representations -- Number Theory 21.
Quadratic Residues -- Number Theory 22.
Quadratic Reciprocity proof -- Number Theory 23.
Quadratic Reciprocity Examples -- Number Theory 24.
Square roots mod p -- Number Theory 25.
Sums of squares -- Number Theory 26.
Quadratic Forms -- Number Theory 27.
Introduction to Integer Partitions -- Number Theory 28.
Generating Functions -- Number Theory 29.
How to use generating functions with integer partitions -- Number Theory 30.
Introduction to product-sum identities -- Number Theory 31.
Ramanujan's Theta Functions -- Number Theory 32.
Ramanujan's famous (mod 5) congruence -- Number Theory 33.
Difference 2 at distance 1 -- Number Theory Video 34.
Taught by
Michael Penn