Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a groundbreaking lecture on Boolean function theory presented by Yufei Zhao from the Massachusetts Institute of Technology. Delve into the proof that a vast majority of k-SAT functions on n Boolean variables are unate, meaning they become monotone after negating certain variables. Discover how this research resolves a long-standing conjecture proposed by Bollobás, Brightwell, and Leader in 2003. Gain insights into the collaborative work with József Balogh, Dingding Dong, Bernard Lidický, and Nitya Mani, which contributes significantly to our understanding of structural results in Boolean function theory and satisfiability problems.