Overview
Syllabus
​ - Introduction
- Why care about generative models?
​ - Latent variable models
​ - Autoencoders
​ - Variational autoencoders
- Priors on the latent distribution
​ - Reparameterization trick
​ - Latent perturbation and disentanglement
- Debiasing with VAEs
​ - Generative adversarial networks
​ - Intuitions behind GANs
- Training GANs
- GANs: Recent advances
- Conditioning GANs on a specific label
- CycleGAN of unpaired translation
​ - Summary of VAEs and GANs
- Diffusion Model sneak peak
Taught by
https://www.youtube.com/@AAmini/videos