Explore a 36-minute lecture on the equivalence between genuine entanglement and genuine nonlocality in multipartite quantum states. Delve into the relationship between entanglement and Bell nonlocality, a fundamental problem in quantum physics with implications for both theory and applications. Examine how stabilizer formalism reveals that genuinely entangled stabilizer subspaces exhibit multipartite full nonlocality, meaning they produce correlations without local hidden variable model contributions. Discover the first examples of genuinely nonlocal subspaces in multi-qubit Hilbert spaces where every pure state is genuinely nonlocal. Learn about the importance of this research for quantum information processing in device-independent frameworks and its potential impact on quantum resource theory.
All Genuinely Entangled Stabilizer Subspaces are Multipartite Fully Nonlocal
Centrum Fizyki Teoretycznej PAN via YouTube
Overview
Syllabus
Mgr O. Makuta (CTP PAS):All genuinely entangled stabilizer subspaces are multipartite fully nonlocal
Taught by
Centrum Fizyki Teoretycznej PAN