Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

NPTEL

Linear Algebra

NPTEL and Indian Institute of Technology Madras via YouTube

Overview

COURSE OUTLINE: In this course, you will learn systems of linear equations, Matrices, Elementary row operations, Row-reduced echelon matrices. Vector spaces, Subspaces, Bases and dimension, Ordered bases and coordinates. Linear transformations, Rank-nullity theorem, Algebra of linear transformations, Isomorphism, Matrix representation, Linear functionals, Annihilator, Double dual, Transpose of a linear transformation. Characteristic values and characteristic vectors of linear transformations, Diagonalizability, Minimal polynomial of a linear transformation, Cayley-Hamilton theorem, Invariant subspaces, Direct-sum decompositions, Invariant direct sums, The primary decomposition theorem, Cyclic subspaces and annihilators, Cyclic decomposition, Rational, Jordan forms. Inner product spaces, Orthonormal bases, Gram-Schmidt process.

Syllabus

Mod-01 Lec-01 Introduction to the Course Contents..
Mod-01 Lec-02 Linear Equations.
Mod-01 Lec-03a Equivalent Systems of Linear Equations I: Inverses of Elementary Row-operations.
Mod-01 Lec-03b Equivalent Systems of Linear Equations II: Homogeneous Equations, Examples.
Mod-01 Lec-04 Row-reduced Echelon Matrices.
Mod-01 Lec-05 Row-reduced Echelon Matrices and Non-homogeneous Equations.
Mod-01 Lec-06 Elementary Matrices, Homogeneous Equations and Non-homogeneous Equations.
Mod-01 Lec-07 Invertible matrices, Homogeneous Equations Non-homogeneous Equations.
Mod-02 Lec-08 Vector spaces.
Mod-02 Lec-09 Elementary Properties in Vector Spaces. Subspaces.
Mod-02 Lec-10 Subspaces (continued), Spanning Sets, Linear Independence, Dependence.
Mod-03 Lec-11 Basis for a vector space.
Mod-03 Lec-12 Dimension of a vector space.
Mod-03 Lec-13 Dimensions of Sums of Subspaces.
Mod-04 Lec-14 Linear Transformations.
Mod-04 Lec-15 The Null Space and the Range Space of a Linear Transformation.
Mod-04 Lec-16 The Rank-Nullity-Dimension Theorem. Isomorphisms Between Vector Spaces.
Mod-04 Lec-17 Isomorphic Vector Spaces, Equality of the Row-rank and the Column-rank I.
Mod-04 Lec-18 Equality of the Row-rank and the Column-rank II.
Mod-05 Lec19 The Matrix of a Linear Transformation.
Mod-05 Lec-20 Matrix for the Composition and the Inverse. Similarity Transformation.
Mod-06 Lec-21 Linear Functionals. The Dual Space. Dual Basis I.
Mod-06 Lec-22 Dual Basis II. Subspace Annihilators I.
Mod-06 Lec-23 Subspace Annihilators II.
Mod-06 Lec-24 The Double Dual. The Double Annihilator.
Mod-06 Lec-25 The Transpose of a Linear Transformation. Matrices of a Linear.
Mod-07 Lec-26 Eigenvalues and Eigenvectors of Linear Operators.
Mod-07 Lec-27 Diagonalization of Linear Operators. A Characterization.
Mod-07 Lec-28 The Minimal Polynomial.
Mod-07 Lec-29 The Cayley-Hamilton Theorem.
Mod-08 Lec-30 Invariant Subspaces.
Mod-08 Lec-31 Triangulability, Diagonalization in Terms of the Minimal Polynomial.
Mod-08 Lec-32 Independent Subspaces and Projection Operators.
Mod-09 Lec-33 Direct Sum Decompositions and Projection Operators I.
Mod-09 Lec-34 Direct Sum Decomposition and Projection Operators II.
Mod-10 Lec-35 The Primary Decomposition Theorem and Jordan Decomposition.
Mod-10 Lec-36 Cyclic Subspaces and Annihilators.
Mod-10 Lec-37 The Cyclic Decomposition Theorem I.
Mod-10 Lec-38 The Cyclic Decomposition Theorem II. The Rational Form.
Mod-11 Lec-39 Inner Product Spaces.
Mod-11 Lec-40 Norms on Vector spaces. The Gram-Schmidt Procedure I.
Mod-11 Lec-41 The Gram-Schmidt Procedure II. The QR Decomposition..
Mod-11 Lec-42 Bessel's Inequality, Parseval's Indentity, Best Approximation.
Mod-12 Lec-43 Best Approximation: Least Squares Solutions.
Mod-12 Lec-44 Orthogonal Complementary Subspaces, Orthogonal Projections.
Mod-12 Lec-45 Projection Theorem. Linear Functionals.
Mod-13 Lec-46 The Adjoint Operator.
Mod-13 Lec-47 Properties of the Adjoint Operation. Inner Product Space Isomorphism.
Mod-14 Lec-48 Unitary Operators.
Mod-14 Lec-49 Unitary operators II. Self-Adjoint Operators I..
Mod-14 Lec-50 Self-Adjoint Operators II - Spectral Theorem.
Mod-14 Lec-51 Normal Operators - Spectral Theorem.

Taught by

nptelhrd

Tags

Reviews

Start your review of Linear Algebra

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.