Overview
Syllabus
Machine Learning Tutorial Python -1: What is Machine Learning?.
Machine Learning Tutorial Python - 2: Linear Regression Single Variable.
Machine Learning Tutorial Python - 3: Linear Regression Multiple Variables.
Machine Learning Tutorial Python - 4: Gradient Descent and Cost Function.
Machine Learning Tutorial Python - 5: Save Model Using Joblib And Pickle.
Machine Learning Tutorial Python - 6: Dummy Variables & One Hot Encoding.
Machine Learning Tutorial Python - 7: Training and Testing Data.
Machine Learning Tutorial Python - 8: Logistic Regression (Binary Classification).
Machine Learning Tutorial Python - 8 Logistic Regression (Multiclass Classification).
Machine Learning Tutorial Python - 9 Decision Tree.
Machine Learning Tutorial Python - 10 Support Vector Machine (SVM).
Machine Learning Tutorial Python - 11 Random Forest.
Machine Learning Tutorial Python 12 - K Fold Cross Validation.
Machine Learning Tutorial Python - 13: K Means Clustering Algorithm.
Machine Learning Tutorial Python - 14: Naive Bayes Classifier Algorithm Part 1.
Machine Learning Tutorial Python - 15: Naive Bayes Classifier Algorithm Part 2.
Machine Learning Tutorial Python - 16: Hyper parameter Tuning (GridSearchCV).
Machine Learning Tutorial Python - 17: L1 and L2 Regularization | Lasso, Ridge Regression.
Machine Learning & Data Science Project - 1 : Introduction (Real Estate Price Prediction Project).
Machine Learning & Data Science Project - 2 : Data Cleaning (Real Estate Price Prediction Project).
Machine Learning & Data Science Project - 3 : Feature Engineering (Real Estate Price Prediction).
Machine Learning & Data Science Project - 4 : Outlier Removal (Real Estate Price Prediction Project).
Machine Learning & Data Science Project - 5 : Model Building (Real Estate Price Prediction Project).
Machine Learning & Data Science Project - 6 : Python Flask Server (Real Estate Price Prediction).
Machine Learning & Data Science Project - 7 : Website or UI (Real Estate Price Prediction Project).
Deploy machine learning model to production AWS (Amazon EC2 instance).
Data Science & Machine Learning Project - Part 1 Introduction | Image Classification.
Data Science & Machine Learning Project - Part 2 Data Collection | Image Classification.
Data Science & Machine Learning Project - Part 3 Data Cleaning | Image Classification.
Data Science & Machine Learning Project - Part 4 Feature Engineering | Image Classification.
Data Science & Machine Learning Project - Part 5 Training a Model | Image Classification.
Data Science & Machine Learning Project - Part 6 Flask Server | Image Classification.
Data Science & Machine Learning Project - Part 7 Build Website | Image Classification.
Data Science & Machine Learning Project - Part 8 Deployment & Exercise | Image Classification.
What is feature engineering | Feature Engineering Tutorial Python # 1.
Outlier detection and removal using percentile | Feature engineering tutorial python # 2.
Outlier detection and removal: z score, standard deviation | Feature engineering tutorial python # 3.
Outlier detection and removal using IQR | Feature engineering tutorial python # 4.
Introduction | Deep Learning Tutorial 1 (Tensorflow Tutorial, Keras & Python).
Why deep learning is becoming so popular? | Deep Learning Tutorial 2 (Tensorflow2.0, Keras & Python).
What is a neuron? | Deep Learning Tutorial 3 (Tensorflow Tutorial, Keras & Python).
What is a Neural Network | Deep Learning Tutorial 4 (Tensorflow2.0, Keras & Python).
Install tensorflow 2.0 | Deep Learning Tutorial 5 (Tensorflow Tutorial, Keras & Python).
Pytorch vs Tensorflow vs Keras | Deep Learning Tutorial 6 (Tensorflow Tutorial, Keras & Python).
Neural Network For Handwritten Digits Classification | Deep Learning Tutorial 7 (Tensorflow2.0).
Activation Functions | Deep Learning Tutorial 8 (Tensorflow Tutorial, Keras & Python).
Derivatives | Deep Learning Tutorial 9 (Tensorflow Tutorial, Keras & Python).
Matrix Basics | Deep Learning Tutorial 10 (Tensorflow Tutorial, Keras & Python).
Loss or Cost Function | Deep Learning Tutorial 11 (Tensorflow Tutorial, Keras & Python).
Gradient Descent For Neural Network | Deep Learning Tutorial 12 (Tensorflow2.0, Keras & Python).
Implement Neural Network In Python | Deep Learning Tutorial 13 (Tensorflow2.0, Keras & Python).
Stochastic Gradient Descent vs Batch Gradient Descent vs Mini Batch Gradient Descent |DL Tutorial 14.
Chain Rule | Deep Learning Tutorial 15 (Tensorflow2.0, Keras & Python).
Tensorboard Introduction | Deep Learning Tutorial 16 (Tensorflow2.0, Keras & Python).
GPU bench-marking with image classification | Deep Learning Tutorial 17 (Tensorflow2.0, Python).
Customer churn prediction using ANN | Deep Learning Tutorial 18 (Tensorflow2.0, Keras & Python).
Precision, Recall, F1 score, True Positive|Deep Learning Tutorial 19 (Tensorflow2.0, Keras & Python).
Dropout Regularization | Deep Learning Tutorial 20 (Tensorflow2.0, Keras & Python).
Handling imbalanced dataset in machine learning | Deep Learning Tutorial 21 (Tensorflow2.0 & Python).
Applications of computer vision | Deep Learning Tutorial 22 (Tensorflow2.0, Keras & Python).
Simple explanation of convolutional neural network | Deep Learning Tutorial 23 (Tensorflow & Python).
Image classification using CNN (CIFAR10 dataset) | Deep Learning Tutorial 24 (Tensorflow & Python).
Convolution padding and stride | Deep Learning Tutorial 25 (Tensorflow2.0, Keras & Python).
Data augmentation to address overfitting | Deep Learning Tutorial 26 (Tensorflow, Keras & Python).
Transfer Learning | Deep Learning Tutorial 27 (Tensorflow, Keras & Python).
Image classification vs Object detection vs Image Segmentation | Deep Learning Tutorial 28.
Popular datasets for computer vision: ImageNet, Coco and Google Open images | Deep Learning 29.
Sliding Window Object Detection | Deep Learning Tutorial 30 (Tensorflow, Keras & Python).
What is YOLO algorithm? | Deep Learning Tutorial 31 (Tensorflow, Keras & Python).
Object detection using YOLO v4 and pre trained model | Deep Learning Tutorial 32 (Tensorflow).
What is Recurrent Neural Network (RNN)? Deep Learning Tutorial 33 (Tensorflow, Keras & Python).
Types of RNN | Recurrent Neural Network Types | Deep Learning Tutorial 34 (Tensorflow & Python).
Vanishing and exploding gradients | Deep Learning Tutorial 35 (Tensorflow, Keras & Python).
Simple Explanation of LSTM | Deep Learning Tutorial 36 (Tensorflow, Keras & Python).
Simple Explanation of GRU (Gated Recurrent Units) | Deep Learning Tutorial 37 (Tensorflow & Python).
Bidirectional RNN | Deep Learning Tutorial 38 (Tensorflow, Keras & Python).
Converting words to numbers, Word Embeddings | Deep Learning Tutorial 39 (Tensorflow & Python).
Word embedding using keras embedding layer | Deep Learning Tutorial 40 (Tensorflow, Keras & Python).
What is Word2Vec? A Simple Explanation | Deep Learning Tutorial 41 (Tensorflow, Keras & Python).
Word2Vec Part 2 | Implement word2vec in gensim | | Deep Learning Tutorial 42 with Python.
Distributed Training On NVIDIA DGX Station A100 | Deep Learning Tutorial 43 (Tensorflow & Python).
Tensorflow Input Pipeline | tf Dataset | Deep Learning Tutorial 44 (Tensorflow, Keras & Python).
Optimize Tensorflow Pipeline Performance: prefetch & cache | Deep Learning Tutorial 45 (Tensorflow).
What is BERT? | Deep Learning Tutorial 46 (Tensorflow, Keras & Python).
Text Classification Using BERT & Tensorflow | Deep Learning Tutorial 47 (Tensorflow, Keras & Python).
tf serving tutorial | tensorflow serving tutorial | Deep Learning Tutorial 48 (Tensorflow, Python).
Quantization in deep learning | Deep Learning Tutorial 49 (Tensorflow, Keras & Python).
Taught by
codebasics