Overview
Syllabus
1.3.0 Machine Learning in 4 Lines of Code -
2.0.0 Machine Learning Basics -
3.0.0 Machine Learning in Business -
3.1.0 How to know when to use ML -
3.2.0 Ethics in Machine Learning -
4.1.0 Holistically Designing A ML Algorithm Using CRISP-DM -
4.2.0 Business Understanding and Data Understanding -
4.3.0 Data Preparation -
4.4.0 Modeling -
4.4.1 Determining Which Model to Use -
4.4.2 Implementing a Model -
4.5.0 Evaluation -
5.0.0 Data Cleaning and Environment Setup -
5.1.0 Setting up and Environment -
5.2.0 Data Cleaning Techniques -
5.2.2 Basic Data Format -
5.2.3 Remove Columns with One Unique Value -
5.2.4 Data Types -
5.2.5 Parsing Dates -
5.2.6 Missing Data -
5.2.7 Select Target Column -
5.2.8 Data Encoding -
5.2.9 Multicollinearity -
5.2.10 Feature Engineering -
5.2.11 Scaling -
5.2.12 Train Test Split -
6.0.0 Regression -
6.1.0 Data Cleaning: Regression -
6.2.0 Model Selection: Regression -
6.3.1 Linear Regression -
6.3.2 Random Forest Regression -
6.3.3 XGBoost Regression -
6.4.0 Hyperparameter Tuning -
7.0.0 Classification Practice -
7.2.1 Logistic Regression -
7.2.2 Random Forest Classifier -
7.2.3 LightGBM -
7.3.0 Model Evaluation: Classification -
7.3.1 Confusion Matrix -
7.3.2 Area Under the Curve AUC -
7.3.3 F1 Score -
Taught by
Shashank Kalanithi