Machine Learning and Earth System Modeling - From Parameter Calibration to Feature Detection
Kavli Institute for Theoretical Physics via YouTube
Overview
Syllabus
Introduction
Carbon Cycle
Land Models
Basic Setup
Training Data
Input Parameters
Feature Input Parameters
parameter distributions
parameter uncertainty
leverage
motivation
machine learning in earth science
climate net project
climate model output
atmospheric river detection
single input field
front detection
labeled data
seasonal front crossing
validation
delta
jet response
precipitation extremes
dipole response
seasonal response
extreme precipitation
SmartSim
Earth System Data Science Initiative
Summary
Parameters
Taught by
Kavli Institute for Theoretical Physics