Learning Probability Distributions - What Can, What Can't Be Done - Shai Ben-David
Institute for Advanced Study via YouTube
Overview
Syllabus
Intro
A fundamental statistical learning problem
The most ambitious framework
Such an ambitious task is provably impossible
Talk outline
Part 1: Density estimation of a restricted family of distributions
Our main technical tool - Sample compression schemes
A General Learning Problem
Examples of EMX problems
Binary classification (-- the "clean" case) The "Fundamental Theorem of Statistical Learning"
The case of Subset Probability Maximization
Non-equivalence for EMX
More Sample Compression
Monotone compression for subset probability maximization
Examples of such compression
A Quantitative version
A model theoretic observation
Discussion
New Challenges
Taught by
Institute for Advanced Study