Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Best Lipschitz Maps and Transverse Measures - Part 2

IMSA via YouTube

Overview

Delve into the second part of a lecture series on best Lipschitz maps and transverse measures presented by Karen Uhlenbeck from the University of Texas at Austin. Explore a scheme for finding maps that realize the best Lipschitz constant between hyperbolic surfaces within a fixed homotopy class. Examine the use of Schatten-von Neumann norm approximations and discover how transverse measures with values in a Lie algebra bundle emerge from Noether's theorem. Investigate the connection between limiting transverse measures and infinitesimal earthquakes along canonical laminations, providing an analytic description of this geometric phenomenon. Gain insights into the relationship between length variation and earthquakes in Teichmuller theory, bridging concepts from geometric topology and differential geometry.

Syllabus

Karen Uhlenbeck, University of Texas at Austin: Best Lipschitz Maps and Transverse Measures Pt. 2

Taught by

IMSA

Reviews

Start your review of Best Lipschitz Maps and Transverse Measures - Part 2

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.