Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

K-Nearest Neighbors (KNN) Algorithm - Introduction and Applications

NPTEL-NOC IITM via YouTube

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the K-Nearest Neighbors (kNN) algorithm in this 26-minute lecture from NPTEL-NOC IITM. Learn about the fundamentals of kNN, including its applications, underlying assumptions, and step-by-step implementation. Discover when to use kNN and gain insights into crucial aspects such as parameter selection, feature scaling, and the importance of feature selection. Through illustrations and practical examples, understand how kNN works during the testing phase and grasp key considerations for effective implementation.

Syllabus

Introduction
Why KNN and when does one use it?
k Nearest Neighbors
Assumptions
Algorithm
Illustration of KNN (Testing)
Things to consider
Parameter selection
Feature selection and scaling

Taught by

NPTEL-NOC IITM

Reviews

Start your review of K-Nearest Neighbors (KNN) Algorithm - Introduction and Applications

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.