Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

José María Martell - Layer Potentials, Extrapolation and Boundary Value Problems in Unbounded Domains

Hausdorff Center for Mathematics via YouTube

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore boundary value problems for elliptic systems with constant complex coefficients in unbounded domains through this 48-minute lecture by José María Martell at the Hausdorff Center for Mathematics. Delve into recent joint research that employs the method of layer potentials to construct unique solutions for domains with unit normals of small oscillation. Learn how the invertibility of a natural operator is demonstrated using a Neumann series. Discover how this approach allows for the consideration of boundary value problems with data in Lebesgue spaces with Muckenhoupt weights. Examine how a sharpened version of the Rubio extrapolation theorem leads to well-posedness of boundary value problems in weighted Banach function spaces.

Syllabus

José María Martell: Layer potentials, Extrapolation and Boundary Value Problems in unbounded domains

Taught by

Hausdorff Center for Mathematics

Reviews

Start your review of José María Martell - Layer Potentials, Extrapolation and Boundary Value Problems in Unbounded Domains

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.