Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

SchNet - A Deep Learning Architecture for Molecules and Materials

BIMSA via YouTube

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the groundbreaking deep learning architecture SchNet, designed specifically for modeling atomistic systems in chemical physics. Delve into the application of continuous-filter convolutional layers to accurately predict properties across chemical space for both molecules and materials. Discover how SchNet learns chemically plausible embeddings of atom types throughout the periodic table. Gain insights into the integration of kernel methods with SchNet to generate highly accurate and predictive results. This 49-minute talk by Huziel E. Sauceda at BIMSA showcases the paradigm shift in artificial intelligence within chemical physics and demonstrates the potential of deep learning in representing quantum-mechanical interactions and enhancing the exploration of chemical compound space.

Syllabus

Huziel E. Sauceda: SchNet - A deep learning architecture for molecules and materials #ICBS2024

Taught by

BIMSA

Reviews

Start your review of SchNet - A Deep Learning Architecture for Molecules and Materials

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.