Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

GoogLeNet Deep Neural Network Explained - Inception V1 Architecture and Implementation

Yacine Mahdid via YouTube

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the intricacies of GoogLeNet, also known as Inception V1, in this comprehensive 23-minute tutorial. Dive into the architecture of this 22-layer deep neural network, which revolutionized deep learning in 2014 with its innovative use of 1x1 convolutions. Learn how to implement GoogLeNet using PyTorch and apply it to the CIFAR-10 dataset. Follow a detailed breakdown of the "Going Deeper with Convolutions" paper, understanding the Inception module, architecture details, training process, and results. Gain hands-on experience with PyTorch implementation, covering Inception modules, BasicConv2D, InceptionAux, and the complete GoogLeNet structure. Perfect for machine learning enthusiasts looking to deepen their understanding of influential neural network architectures.

Syllabus

- Introduction:
- GoogLeNet with Pytorch on CIFAR-10:
- Background:
- Architecture Overview:
- Inception Module:
- Architecture Details:
- GoogLeNet Training:
- GoogLeNet Result:
- GoogLeNet Pytorch Overview:
- GoogLeNet Pytorch - Inception:
- GoogLeNet Pytorch - BasicConv2D:
- GoogLeNet Pytorch - InceptionAux:
- GooGleNet Pytorch - GoogLeNet:
- Conclusion:

Taught by

Yacine Mahdid

Reviews

Start your review of GoogLeNet Deep Neural Network Explained - Inception V1 Architecture and Implementation

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.