Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

From Knots to Number Theory II

ICTP Mathematics via YouTube

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the fascinating connections between quantum invariants of knots and 3-manifolds and advanced number theory in this comprehensive lecture. Delve into the rigidity theorems of 3-dimensional hyperbolic topology and their arithmetic implications, linking hyperbolic 3-manifold volumes to the Bloch group and algebraic K-theory through the dilogarithm. Discover the Kashaev invariant's relationship to hyperbolic volume and the Habiro ring. Investigate recent developments in algebraic number theory, including the construction of non-trivial units and extensions of the Habiro ring to arbitrary algebraic number fields. Uncover the surprising "quantum modularity" properties of the Kashaev invariant and its generalizations, leading to new concepts in modular forms theory. Learn about collaborative research with Stavros Garoufalidis, Rinat Kashaev, and Peter Scholze. Gain insights into topics such as regulators, inverse limits, congruence, Norman Sagir equations, the Gashith invariant, and power series with coefficients. No prior knowledge of knot theory, K-theory, or modular forms theory is required for this accessible lecture designed for a general mathematical audience.

Syllabus

Introduction
Welcome
Number Theory
Regulators
Inverse Limit
Congruence
Topology
Norman Sagir Equations
Two Three Partner Move
Gashith Invariant
The power series
Power series with coefficients
The product

Taught by

ICTP Mathematics

Reviews

Start your review of From Knots to Number Theory II

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.