Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

The Complex Evolution of Comet Nuclei - Evidence from Deep Impact and Stardust-NExT

AGU via YouTube

Overview

Explore the complex evolution of comet nuclei through evidence from the Deep Impact and Stardust-NExT missions in this 55-minute AGU Fall Meeting 2011 Whipple Lecture. Delve into Fred Whipple's 1950 "dirty snowballs" theory and its evolution following ESA's Giotto mission to Comet Halley in 1986. Examine the geologically complex nucleus of Comet Tempel 1, including its smooth flow characteristics, mechanism, and the formation of thicker layers. Investigate the comet's uniformly black appearance, significant erosion, and pitted terrain. Gain insights into the conclusions drawn from these observations and discuss the future prospects of comet sample return missions. This lecture, presented by Joseph Veverka from Cornell University, offers a comprehensive overview of our current understanding of comet nuclei and their complex evolutionary processes.

Syllabus

The Complex Evolution of Comet Nuclei: Evidence from Deep Impact and Stardust-NEXT
Fred Whipple (1950) argued comet nuclei must be "dirty snowballs"
Comet Halley: ESA's Giotto 1986
Comet Nuclei: Halley Era Ideas
Tempel 1: A Geologically Complex Nucleus
Successful Encounter! Feb. 14, 2011
Smooth Flow Characteristics
Smooth Flow Mechanism
Thicker Layers: How Are They Made?
Tempel 1: Uniformly Black
Significant Erosion
Pitted Terrain
Conclusions
The Future: Sample Return

Taught by

AGU

Reviews

Start your review of The Complex Evolution of Comet Nuclei - Evidence from Deep Impact and Stardust-NExT

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.