Overview
Syllabus
Engineering Probability Lecture 1: Experiments, Sample Spaces, and Events.
Engineering Probability Lecture 2: Axioms of probability and counting methods.
Engineering Probability Lecture 3: Conditional probability.
Engineering Probability Lecture 4: Independent events and Bernoulli trials.
Engineering Probability Lecture 5: Discrete random variables.
Engineering Probability Lecture 6: Expected value and moments.
Engineering Probability Lecture 7: Conditional probability mass functions.
Engineering Probability Lecture 8: Cumulative distribution functions (CDFs).
Engineering Probability Lecture 9: Probability density functions and continuous random variables.
Engineering Probability Lecture 10: The Gaussian random variable and Q function.
Engineering Probability Lecture 11: Expected value for continuous random variables.
Engineering Probability Lecture 12: Functions of a random variable; inequalities.
Engineering Probability Lecture 13: Two random variables (discrete).
Engineering Probability Lecture 14: Two random variables (continuous); independence.
Engineering Probability Lecture 15: Joint expectations; correlation and covariance.
Engineering Probability Lecture 16: Conditional PDFs; Bayesian and maximum likelihood estimation.
Engineering Probability Lecture 17: Conditional expectations.
Engineering Probability Lecture 18: Sums of random variables and laws of large numbers.
Engineering Probability Lecture 19: The Central Limit Theorem.
Engineering Probability Lecture 20: MAP, ML, and MMSE estimation.
Engineering Probability Lecture 21: Hypothesis testing.
Engineering Probability Lecture 22: Testing the fit of a distribution; generating random samples.
Taught by
Rich Radke