Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Hybrid Variational Algorithms for Classical and Quantum Complex Systems

Institute for Pure & Applied Mathematics (IPAM) via YouTube

Overview

Explore a comprehensive lecture on hybrid variational algorithms for classical and quantum complex systems presented by Elisa Ercolessi from the Università di Bologna. Delve into the potential of Quantum Computing for tackling hard classical problems and quantum many-body systems, while acknowledging the current limitations of NISQ devices. Examine hybrid classical-quantum protocols of variational type, which leverage quantum resources to efficiently prepare states dependent on carefully chosen variational parameters. Discover how these parameters can be optimized using classical computers, with a focus on compatibility with existing quantum platforms. Gain insights into the Quantum Approximate Optimization Algorithm (QAOA) through various applications to both classical and quantum systems, including emulations on classical hardware and a case study implemented on a real Rydberg atom quantum machine. Enhance your understanding of cutting-edge approaches in the field of complex systems and quantum computing through this 53-minute presentation from IPAM's Tensor Networks Workshop.

Syllabus

Elisa Ercolessi - Hybrid Variational Algorithms for Classical and Quantum Complex Systems

Taught by

Institute for Pure & Applied Mathematics (IPAM)

Reviews

Start your review of Hybrid Variational Algorithms for Classical and Quantum Complex Systems

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.