Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Eisenstein Cocycles and Values of L-Functions

Fields Institute via YouTube

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a 55-minute conference talk from the Fields Institute's "Theta Series: Representation Theory, Geometry, and Arithmetic" event, delivered by Luis Garcia from University College London. Delve into recent constructions of Eisenstein cocycles of arithmetic groups, examining their development through equivariant cohomology and differential forms. Discover how these objects function as theta kernels, connecting arithmetic group homology to algebraic structures. Investigate the application of these concepts to Sczech and Colmez's conjectures on critical values of Hecke L-functions. Follow the progression from introduction and explicit examples through modular symbols, abstract frameworks, and equivalent chromology to the exploration of symmetric spaces, differential forms, and fractional ideals.

Syllabus

Introduction
Explicit example
Modular symbols
Space of functions
Abstract framework
Equivalent chromology
elliptic chromology
canonical units
general theory
symmetric space
differential forms
psi
pq
System series
Fractional Ideal
Application

Taught by

Fields Institute

Reviews

Start your review of Eisenstein Cocycles and Values of L-Functions

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.