Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Higher-Order Multi-Variate Statistics for Scientific Data Analysis

Inside Livermore Lab via YouTube

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore higher-order multi-variate statistics for scientific data analysis in this seminar by Hemanth Kolla from Sandia National Laboratories. Delve into the importance of analyzing multi-variate non-Gaussian statistical processes in scientific phenomena, going beyond traditional correlations and covariance. Learn about the application of higher-order statistics like coskewness and cokurtosis in scientific data analysis, with a focus on rare event detection and dimensionality reduction for stiff dynamical systems. Discover connections to Independent Component Analysis and symmetric tensor decomposition. Gain insights into the development of low overhead, scalable, and parallelizable algorithms for computing and factorizing the cokurtosis tensor, designed for in situ application in large simulations. Understand the intersection of high-performance scientific computing and statistical learning, including topics such as tensor decompositions, efficient forward propagation of parametric uncertainty in computational mechanics, and algorithm-based fault tolerance for HPC.

Syllabus

DSI | Higher-Order Multi-Variate Statistics for Scientific Data Analysis

Taught by

Inside Livermore Lab

Reviews

Start your review of Higher-Order Multi-Variate Statistics for Scientific Data Analysis

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.