Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the challenges and advancements in quantum cryptography through this 43-minute lecture by Sanjam Garg from UC Berkeley. Delve into topics such as Virtual-Black-Box Notion, Indistinguishability Obfuscation, and Randomized Encodings. Examine open questions in obfuscation and investigate the possibility of encoding quantum programs classically. Learn about Attribute-Based Encryption, Non-Interactive Key Exchange, and their applications in quantum computing. Gain insights into Secure Multiparty Computation and efficiency considerations in the context of quantum cryptography.
Syllabus
Intro
Outline
Attempt 1: Virtual-Black-Box Notion
Attempt 2: Indistinguishability Obfuscation (10)
Obfuscation: Open Questions
Randomized Encodings
Question 3: Can Alice encode a quantum program classically?
Attribute-Based Encryption
Non-Interactive Key Exchange [DH76]
Starting Point NIKE from Obfuscation BZ14
Secure Multiparty Computation
Efficiency
Taught by
Simons Institute