Overview
Syllabus
Intro
Remember, Neural Nets are Feature Extractors!
Types of Learning
Plethora of Tasks in NLP
Rule of Thumb 1: Multitask to Increase Data
Rule of Thumb 2
Standard Multi-task Learning
Examples of Pre-training Encoders
Regularization for Pre-training (e.g. Barone et al. 2017)
Selective Parameter Adaptation
Soft Parameter Tying
Supervised/Unsupervised Adaptation
Supervised Domain Adaptation through Feature Augmentation
Unsupervised Learning through Feature Matching
Multilingual Inputs
Multilingual Structured Prediction/ Multilingual Outputs
Teacher-student Networks for Multilingual Adaptation (Chen et al. 2017)
Types of Multi-tasking
Multiple Annotation Standards
Taught by
Graham Neubig