Calling the Shot: How AI Predicted Fusion Ignition Before It Happened
Inside Livermore Lab via YouTube
Overview
Syllabus
At am on December 5, 2022, 192 laser beams at the National Ignition Facility focused 2.05 megajoules of energy onto a peppercorn-sized capsule of frozen hydrogen fuel. In less time than it takes light to travel 10 feet, the laser crushed the capsule to smaller than the width of a human hair, vaulting the fuel to temperatures and densities exceeding those found in the sun. Under these extreme conditions, the fuel ignited and produced 3.15 megajoules of energy, making it the first experiment to ever achieve net energy gain from nuclear fusion. Nuclear fusion is the universe’s ultimate power source. It drives our sun and all the stars in the night sky. Harnessing it would mean a future of limitless carbon-free, safe, clean energy. After several decades of research, fusion breakeven at NIF brings humanity one step closer to that dream. Yet, the shot that finally ushered in the Fusion Age was not actually that surprising. A few hours before the experiment, our physics team used an artificial intelligence model to predict the outcome of the experiment. Our model, which blends supercomputer simulations with experimental data, indicated that ignition was the most likely outcome for this shot. As such, hopes were high that something big was about to occur. In this talk, we discuss the breakthrough experiment, nuclear fusion, and how we used machine learning to call the shot heard around the world.
Taught by
Inside Livermore Lab