Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Bank Defaulters Using ANN

Great Learning via YouTube

Overview

Explore the fundamentals of Artificial Neural Networks (ANN) and their application in predicting bank defaulters in this comprehensive video tutorial. Delve into the brain-inspired data-processing paradigm of ANN, learning its architecture, weights, biases, activation functions, and back propagation. Discover the power of Keras, a user-friendly Python neural network library, and witness practical demonstrations using real-world examples. Master key concepts such as ANN architecture, loss functions, gradient descent, and Keras basic ANN architecture through hands-on demos. Gain valuable insights into dataset overview, model framework, and ANN application in credit data analysis. By the end of this 1-hour 18-minute tutorial, acquire the skills to implement ANNs for financial risk assessment and credit scoring.

Syllabus

Course Introduction.
Objective of the course.
Architecture of ANN.
Weights , Biasis and Activation Functions.
Activation Function.
Loss Functions in Neural Networks.
Back Propagation in Neural Networks.
Gradient Descent.
Keras_Basic_ANN_Architecture - Demo.
Dataset Overview and Model Framework.
ANN_Application_Credit_Data - Demo.

Taught by

Great Learning

Reviews

Start your review of Bank Defaulters Using ANN

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.