Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Instantons, Suspension, and Surgery - Part 1

IMSA via YouTube

Overview

Explore a conference talk on gauge theory and low-dimensional topology, focusing on the Dehn surgery number of oriented connected closed 3-manifolds. Delve into the groundbreaking research by Aliakbar Daemi and Miller Eismeier, which demonstrates the existence of integer homology 3-spheres with arbitrarily large Dehn surgery numbers. Examine the proof methodology, which utilizes Froyshov's q_3 invariant and mod 2 instanton homology. Investigate two crucial components of the proof: the computation of q_3 for connected sums of Poincare homology spheres and an inequality involving q_3 of a 3-manifold Y in relation to b^+ of a 4-manifold filling Y. Gain insights into the concept of suspensions of instanton Floer complexes and its application in this context.

Syllabus

Aliakbar Daemi, Washington University in St. Louis: Instantons, suspension, and surgery: Part 1

Taught by

IMSA

Reviews

Start your review of Instantons, Suspension, and Surgery - Part 1

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.