Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

AI Agent Evaluation with RAGAS Using LangChain, Claude 3, and Pinecone

James Briggs via YouTube

Overview

Explore the RAGAS (RAG ASsessment) evaluation framework for RAG pipelines in this 20-minute video tutorial. Learn how to assess an AI agent built with LangChain, utilizing Anthropic's Claude 3, Cohere's embedding models, and the Pinecone vector database. Dive into the process of evaluating RAG systems, understanding RAGAS metrics, and implementing metrics-driven development. Gain insights into retrieval metrics like context recall and precision, as well as generation metrics such as faithfulness and answer relevancy. Access the accompanying code, article, and additional resources to enhance your understanding of RAG evaluation techniques.

Syllabus

RAG Evaluation
Overview of LangChain RAG Agent
RAGAS Code Prerequisites
Agent Output for RAGAS
RAGAS Evaluation Format
RAGAS Metrics
Understanding RAGAS Metrics
Retrieval Metrics
RAGAS Context Recall
RAGAS Context Precision
Generation Metrics
RAGAS Faithfulness
RAGAS Answer Relevancy
Metrics Driven Development

Taught by

James Briggs

Reviews

Start your review of AI Agent Evaluation with RAGAS Using LangChain, Claude 3, and Pinecone

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.