A Cookbook for Deep Continuous-Time Predictive Models
Toronto Machine Learning Series (TMLS) via YouTube
Overview
Syllabus
Intro
A Cookbook For Deep Continuous-Time Predictive Models
Motivation: Irregularly-timed datasets
Simplest options
Ordinary Differential Equations
Autoregressive continuous-time
Limitations of RNN-based models
Latent variable models
ODE latent-variable model
Physionet: Predictive accuracy
Poisson Process Likelihoods
Limitations of Latent ODEs
Stochastic transition dynamics
What are SDEs good for?
What is "running an SDE backwards"?
Variational inference
1D Latent SDE
Summary
Related work 1
Related work 2
Taught by
Toronto Machine Learning Series (TMLS)