Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

A Breakthrough in Graph Theory - Numberphile

Numberphile via YouTube

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a groundbreaking development in graph theory with this Numberphile video featuring Erica Klarreich. Delve into the counterexample to Hedetniemi's conjecture, a long-standing problem in mathematics. Learn about graph coloring, tensor products, and the significance of this breakthrough. Discover how Yaroslav Shitov's paper disproved the conjecture and its implications for the field. Gain insights into the history of the problem through photos and pages from Stephen Hedetniemi's original dissertation. Connect this topic to other graph theory concepts explored in previous Numberphile videos, such as four-color maps, planar graphs, and perfect graphs. Enhance your understanding of complex mathematical ideas presented in an accessible and engaging manner.

Syllabus

Intro
What is Amys conjecture
Amys conjecture
What is a graph
What is a network
Color a graph
Color a map
More examples
Pseudo Ku puzzle
Color pencils
Weekend parties
Toy example
Drawing the graph
Color the graph
Draw a hobby graph
Pairings
Edges
The tensor product
Coloring the graph
The best we can do
Hidden Amy
The Lazy Options
The Solution
Exponential Graph
Counter Example
He is still alive
Audible

Taught by

Numberphile

Reviews

Start your review of A Breakthrough in Graph Theory - Numberphile

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.