Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

University of Michigan

Understanding and Visualizing Data with Python

University of Michigan via Coursera

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
In this course, learners will be introduced to the field of statistics, including where data come from, study design, data management, and exploring and visualizing data. Learners will identify different types of data, and learn how to visualize, analyze, and interpret summaries for both univariate and multivariate data. Learners will also be introduced to the differences between probability and non-probability sampling from larger populations, the idea of how sample estimates vary, and how inferences can be made about larger populations based on probability sampling. At the end of each week, learners will apply the statistical concepts they’ve learned using Python within the course environment. During these lab-based sessions, learners will discover the different uses of Python as a tool, including the Numpy, Pandas, Statsmodels, Matplotlib, and Seaborn libraries. Tutorial videos are provided to walk learners through the creation of visualizations and data management, all within Python. This course utilizes the Jupyter Notebook environment within Coursera.

Syllabus

  • WEEK 1 - INTRODUCTION TO DATA
    • In the first week of the course, we will review a course outline and discover the various concepts and objectives to be mastered in the weeks to come. You will get an introduction to the field of statistics and explore a variety of perspectives the field has to offer. We will identify numerous types of data that exist and observe where they can be found in everyday life. You will delve into basic Python functionality, along with an introduction to Jupyter Notebook. All of the course information on grading, prerequisites, and expectations are on the course syllabus and you can find more information on our Course Resources page.
  • WEEK 2 - UNIVARIATE DATA
    • In the second week of this course, we will be looking at graphical and numerical interpretations for one variable (univariate data). In particular, we will be creating and analyzing histograms, box plots, and numerical summaries of our data in order to give a basis of analysis for quantitative data and bar charts and pie charts for categorical data. A few key interpretations will be made about our numerical summaries such as mean, IQR, and standard deviation. An assessment is included at the end of the week concerning numerical summaries and interpretations of these summaries.
  • WEEK 3 - MULTIVARIATE DATA
    • In the third week of this course on looking at data, we’ll introduce key ideas for examining research questions that require looking at more than one variable. In particular, we will consider both numerically and visually how different variables interact, how summaries can appear deceiving if you don’t properly account for interactions, and differences between quantitative and categorical variables. This week’s assignment will consist of a writing assignment along with reviewing those of your peers.
  • WEEK 4 - POPULATIONS AND SAMPLES
    • In this week, you’ll spend more time thinking about where data come from. The highest-quality statistical analyses of data will always incorporate information about the process used to generate the data, or features of the data collection design. You’ll be exposed to important concepts related to sampling from larger populations, including probability and non-probability sampling, and how we can make inferences about larger populations based on well-designed samples. You’ll also learn about the concept of a sampling distribution, and how estimation of the variance of that distribution plays a critical role in making statements about populations. Finally, you’ll learn about the importance of reading the documentation for a given data set; a key step in looking at data is also looking at the available documentation for that data set, which describes how the data were generated.

Taught by

Brenda Gunderson, Brady T. West and Kerby Shedden

Reviews

4.7 rating, based on 3 Class Central reviews

4.7 rating at Coursera based on 2641 ratings

Start your review of Understanding and Visualizing Data with Python

  • I used this course as a kind of refresher, didn't view all the video lectures. Most of the material was not new to me. The pythonbooks illustrate well the concepts. I particularly liked the peer-reviewed exercise: a study design for a statistical analysis of a pizza restaurant and its competitor.
  • Kai
    This "Understanding and Visualising Data with Python" training offers: 1. lecture videos teaching you concepts 2. graded quizzes 3. a graded assignment where you have to create a survey design 4. Jupyter notebooks with exercises for you to explo…
  • Anonymous
    This course is practically detail and well-structured. The video lessons are presented with ppt including many samples that is easy to follow and understand. They also provide the 3rd-party tool to practice (Jupyter notebook) with explicit description. Although you might find many lecturers during the course, it's not a big problem. The course is great to enroll.

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.