Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Udemy

Matemáticas para Machine Learning y Data Science

via Udemy

Overview

Cálculo diferencial, álgebra lineal y Estadística EJERCICIOS RESUELTOS Y PROPUESTOS

What you'll learn:
  • Funciones y aplicaciones
  • Derivadas y limites
  • técnicas de optimization
  • Derivadas parciales
  • Gradiente de una funcion
  • el multiplicador de lagrange
  • vectores y matrices
  • valores propios y vectores propios
  • probabilidades
  • pruebas de hipostesis
  • principales estadisticos

Tanto la Inteligencia Artificial como el Aprendizaje Automático son conceptos de moda que mucha gente está interesada en aprender. Cuando comenzamos a estudiar ML, vemos que hay elementos de programación yque tarde o temprano también aparecerán las temidas Matemáticas, exactamente aquellas que pensábamos que nunca más tendríamos que utilizar desde los tiempos de la Universidad.

Para hacer las cosas bien hay que tener una base analítica mínima. En particular, para desarrollar de manera correcta modelos con Machine Learning hay que tener conocimientos básicos de Álgebra Lineal y Teoría de la Probabilidad y Estadística, además de algo de Cálculo y Algoritmia centrada sobre todo en Optimización. Vamos a ver un poquito qué es cada una de estas cosas:

  1. Álgebra Lineal. Así dicho, más de uno se habrá llevado las manos a la cabeza. Sin embargo, en muchas de las cosas que se hacen en cualquier departamento de investigación de una empresa, se aplica Álgebra Lineal, por ejemplo al hacer un análisis de Componentes Principales. El álgebra lineal es una rama de las matemáticas que estudia conceptos tales como vectores, matrices, sistemas de ecuaciones lineales, espacios vectoriales y sus transformaciones lineales. Es un área que tiene conexiones con muchas áreas dentro y fuera de las matemáticas, como el análisis funcional, las ecuaciones diferenciales, la investigación de operaciones, las gráficas por computadora, la ingeniería, etc.

  2. Teoría de la Probabilidad y Estadística. El Machine Learning y la Estadística son campos bastante parecidos. En realidad, el machine Learning es Estadística hecha por las máquinas. Por lo tanto, hay muchas cosas que el analista en este campo tiene que conocer: Combinatoria, Reglas de Probabilidad, Teorema de Bayes, Variables Aleatorias, Varianza, Distribuciones Condicionales y Conjuntas, Distribuciones Estándar (Bernoulli, Binomial, Multinomial, Uniforme y Gaussiana), Estimación de Máxima Verosimilitud, Estimación Máxima a Posteriori, Métodos de Muestreo, etc.

  3. Cálculo multivariante. Que es la extensión del cálculo infinitesimal a funciones escalares y vectoriales de varias variables, y que será clave para temas de optimización. En el cálculo multivariante, pasamos de trabajar con números en una línea a puntos en el espacio. Nos brinda las herramientas para liberarse de las limitaciones de una dimensión, usar funciones para describir el espacio y espacio para describir funciones. Cosas que hay que saber hacer o al menos conocer: cálculo diferencial e integral, derivadas parciales, funciones de valores vectoriales, gradiente direccional, matriz Hessiana, Jacobiano, Laplaciano y función Lagragiana.

Taught by

Edward Cruz (Economía con Manzanitas)

Reviews

3.3 rating at Udemy based on 183 ratings

Start your review of Matemáticas para Machine Learning y Data Science

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.