What you'll learn:
- Understanding the basic concepts
- Complete tutorial about basic packages like Numpy and Pandas
- Data Visualization
- Data Preprocessing
- Understanding the concept behind the algorithms
- Developing different kinds of Machine Learning models
- Knowing how to optimize your models' hyperparameters
- Learn how to develop models based on the requirement of your future business
Are you interested in data science and machine learning, but you don't have any background, and you find the concepts confusing?
Are you interested in programming in Python, but you always afraid of coding?
I think this course is for you!
Even if you are familiar with machine learning, this course can help you to review all the techniques and understand the concept behind each term.
This course is completely categorized, and we don't start from the middle! We actually start from the concept of every term, and then we try to implement it in Python step by step. The structure of the course is as follows:
Chapter1: Introduction and all required installations
Chapter2: Useful Machine Learning libraries (NumPy, Pandas & Matplotlib)
Chapter3: Preprocessing
Chapter4: Machine Learning Types
Chapter5: Supervised Learning: Classification
Chapter6: Supervised Learning: Regression
Chapter7: Unsupervised Learning: Clustering
Chapter8: Model Tuning
Furthermore, you learn how to work with different real datasets and use them for developing your models. All the Python code templates that we write during the course together are available, and you can download them with the resource button of each section.
Remember! That this course is created for you with any background as all the concepts will be explained from the basics! Also, the programming in Python will be explained from the basic coding, and you just need to know the syntax of Python.