The course will basically deal with the following topics:1. Introduction: Definition; Types of automation; Reasons for automating; Automation strategies.2. Detroit type automation : Automated flow lines: types and their selection; Methods of workpart transport; Transfer mechanisms; Controlling of automated flow lines.3. Analysis of automated flow lines: System aspects of designing and running the line; Average production time and production rate; Line efficiency; Analysis of transfer lines without storage – upper bound and lower bound approach; Partial automation.4. Automated assembly systems: Historical developments of the assembly process; Choice of assembly methods; Design for automated assembly; Transfer systems; Vibratory bowl feeders – its analysis; Non-vibratory feeders and their analysis; Analysis and design of part orienting devices, feed tracks and part placing mechanisms.5. Orientation of parts in automatic assembly: In-Bowl and Out-of-Bowl Toolings; Typical Orienting Systems: Wiper Blade, Pressure Break, slot in the track; Analysis of Part Orienting Systems; Examples of Out-of-Bowl Toolings; Feed Tracks: Analysis of Horizontal Delivery Feed Track; “ON-OFF” Sensors; Reliability of Feeding.INTENDED AUDIENCE :Mechanical Engineering, Metallurgy, Aerospace Engineering, Production EngineeringPREREQUISITES : Basic Engineering CoursesINDUSTRY SUPPORT :All Manufacturing industries, Machine tool manufacturing industries, Automobile Industries and aeronautical assembly industries
Overview
Syllabus
Week 1 :
Definition; Discussion on Pros and Cons of Automation;
Benefits of Automation; Types of automation: Fixed automation, programmable automation, and Flexible automation- Typical Features and examples;
Reasons for automating; Automation strategies; Automated flow lines: the objectives of the use of flow line automation;
General forms of Work Flow – criteria for selection;
Methods of work part transport: Continuous, intermittent andasynchronous: types and their selection;
Transfer Mechanisms; Examples of transfer mechanisms for linear traveland rotary transfer mechanisms; Buffer Storage;Week 2 :
Flow line Performance Analysis: Average production time and production rate;
Mean time per cycle when machinebreakdown occurs; Flow line
Performance Analysis: Line efficiency; Cost per item produced;
Partial automation:Reasons for using, Advantages and drawbacks;
Production and Throughput: Examples; Effect of machine Jamming; Component Quality Control;
Choice of assembly methods: Cost, Production Rate, Availability of Labour, and Market Life of the Product;
Advantages of Automatic Assembly; Design for automated assembly; Components of automatic Assembly Machines;Week 3 :
Transfer systems; Assembly Machines: In-Line, Rotary; Continuous and Intermittent Transfer;
Indexing Machines:Factors affecting the choice; Various Indexing Mechanisms;
Vibratory bowl feeders: Mechanics of Vibratory Conveying - its analysis;
Effect of Frequency, Track Acceleration and Vibration Angle; Effect of Track Angle and Coefficient of Friction;
Summary of Bowl Feeder Design; Spiral Elevators; General Requirements of Part Feeders;
Non-vibratory feeders : Reciprocating Tube Hopper Feeder – its analysis;
General Features. Centerboard Hopper Feeder: Analysis: Maximum Track Inclination, Total Cycle Time, Mean Feed Rate;Week 4 :
Reciprocating Tube Hopper Feeder: Principle of Operation;
External Gate Hopper Feeder: Its Analysis: Maximum Peripheral Velocity, Mean Feed rate;
Rotary Disk Feeder: Indexing and Rotary Disk Feeder with continuous drive and their analysis:
Load sensitivity, Efficiency and Mean Feed Rate;
Orientation of Parts in Automatic Assembly:In-Bowl and Out-of-Bowl Toolings;
Typical Orienting Systems: Wiper Blade, Pressure Break, slot in the track; Analysis of Part Orienting Systems;
Examples of Out-of-Bowl Toolings; Feed Tracks: Analysis of Horizontal Delivery Feed Track;
“ON-OFF” Sensors; Reliability of Feeding.
Definition; Discussion on Pros and Cons of Automation;
Benefits of Automation; Types of automation: Fixed automation, programmable automation, and Flexible automation- Typical Features and examples;
Reasons for automating; Automation strategies; Automated flow lines: the objectives of the use of flow line automation;
General forms of Work Flow – criteria for selection;
Methods of work part transport: Continuous, intermittent andasynchronous: types and their selection;
Transfer Mechanisms; Examples of transfer mechanisms for linear traveland rotary transfer mechanisms; Buffer Storage;Week 2 :
Flow line Performance Analysis: Average production time and production rate;
Mean time per cycle when machinebreakdown occurs; Flow line
Performance Analysis: Line efficiency; Cost per item produced;
Partial automation:Reasons for using, Advantages and drawbacks;
Production and Throughput: Examples; Effect of machine Jamming; Component Quality Control;
Choice of assembly methods: Cost, Production Rate, Availability of Labour, and Market Life of the Product;
Advantages of Automatic Assembly; Design for automated assembly; Components of automatic Assembly Machines;Week 3 :
Transfer systems; Assembly Machines: In-Line, Rotary; Continuous and Intermittent Transfer;
Indexing Machines:Factors affecting the choice; Various Indexing Mechanisms;
Vibratory bowl feeders: Mechanics of Vibratory Conveying - its analysis;
Effect of Frequency, Track Acceleration and Vibration Angle; Effect of Track Angle and Coefficient of Friction;
Summary of Bowl Feeder Design; Spiral Elevators; General Requirements of Part Feeders;
Non-vibratory feeders : Reciprocating Tube Hopper Feeder – its analysis;
General Features. Centerboard Hopper Feeder: Analysis: Maximum Track Inclination, Total Cycle Time, Mean Feed Rate;Week 4 :
Reciprocating Tube Hopper Feeder: Principle of Operation;
External Gate Hopper Feeder: Its Analysis: Maximum Peripheral Velocity, Mean Feed rate;
Rotary Disk Feeder: Indexing and Rotary Disk Feeder with continuous drive and their analysis:
Load sensitivity, Efficiency and Mean Feed Rate;
Orientation of Parts in Automatic Assembly:In-Bowl and Out-of-Bowl Toolings;
Typical Orienting Systems: Wiper Blade, Pressure Break, slot in the track; Analysis of Part Orienting Systems;
Examples of Out-of-Bowl Toolings; Feed Tracks: Analysis of Horizontal Delivery Feed Track;
“ON-OFF” Sensors; Reliability of Feeding.
Taught by
Prof. Sounak Kumar Choudhury