Deep Learning - IITKGP
Indian Institute of Technology, Kharagpur and NPTEL via Swayam
-
60
-
- Write review
This course may be unavailable.
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
The availability of huge volume of Image and Video data over the internet has made the problem of data analysis and interpretation a really challenging task. Deep Learning has proved itself to be a possible solution to such Computer Vision tasks. Not only in Computer Vision, Deep Learning techniques are also widely applied in Natural Language Processing tasks. In this course we will start with traditional Machine Learning approaches, e.g. Bayesian Classification, Multilayer Perceptron etc. and then move to modern Deep Learning architectures like Convolutional Neural Networks, Autoencoders etc. On completion of the course students will acquire the knowledge of applying Deep Learning techniques to solve various real life problems. INTENDED AUDIENCE: Electronics and Communication Engineering, Computer Science, Electrical Engineering PRE-REQUISITES: Knowledge of Linear Algebra, DSP, PDE will be helpful. INDUSTRY SUPPORT: Google, Adobe, TCS, DRDO etc.
Syllabus
COURSE LAYOUT
Week 1: Introduction to Deep Learning, Bayesian Learning, Decision SurfacesWeek 2: Linear Classifiers, Linear Machines with Hinge LossWeek 3: Optimization Techniques, Gradient Descent, Batch OptimizationWeek 4: Introduction to Neural Network, Multilayer Perceptron, Back Propagation LearningWeek 5: Unsupervised Learning with Deep Network, AutoencodersWeek 6: Convolutional Neural Network, Building blocks of CNN, Transfer LearningWeek 7: Revisiting Gradient Descent, Momentum Optimizer, RMSProp, AdamWeek 8: Effective training in Deep Net- early stopping, Dropout, Batch Normalization, Instance Normalization, Group NormalizationWeek 9: Recent Trends in Deep Learning Architectures, Residual Network, Skip Connection Network, Fully Connected CNN etc.Week 10: Classical Supervised Tasks with Deep Learning, Image Denoising, Semanticd Segmentation, Object Detection etc.Week 11: LSTM NetworksWeek 12: Generative Modeling with DL, Variational Autoencoder, Generative Adversarial Network Revisiting Gradient Descent, Momentum Optimizer, RMSProp, Adam
Taught by
Prof. Prabir Kumar Biswas