Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Stanford University

Quantum Mechanics for Scientists and Engineers 1

Stanford University via edX

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!

This 9 week course aims to teach quantum mechanics to anyone with a reasonable college-level understanding of physical science or engineering. Quantum mechanics was once mostly of interest to physicists, chemists and other basic scientists. Now the concepts and techniques of quantum mechanics are essential in many areas of engineering and science such as materials science, nanotechnology, electronic devices, and photonics.

This course is a substantial introduction to quantum mechanics and how to use it. It is specifically designed to be accessible not only to physicists but also to students and technical professionals over a wide range of science and engineering backgrounds.

Syllabus

Introduction to quantum mechanics

How quantum mechanics is important in the everyday world, the bizarre aspects and continuing evolution of quantum mechanics, and how we need it for engineering much of modern technology.

Schroedinger’s wave equation

Getting to Schroedinger’s wave equation. Key ideas in using quantum mechanical waves — probability densities, linearity. The "two slit" experiment and its paradoxes.

Getting "quantum" behavior

The "particle in a box", eigenvalues and eigenfunctions. Mathematics of quantum mechanical waves.

Quantum mechanics of systems that change in time

Time variation by superposition of wave functions. The harmonic oscillator. Movement in quantum mechanics — wave packets, group velocity and particle current.

Measurement in quantum mechanics

Operators in quantum mechanics — the quantum-mechanical Hamiltonian. Measurement and its paradoxes — the Stern-Gerlach experiment.

Writing down quantum mechanics simply

A simple general way of looking at the mathematics of quantum mechanics — functions, operators, matrices and Dirac notation. Operators and measurable quantities. The uncertainty principle.

The hydrogen atom

Angular momentum in quantum mechanics — atomic orbitals. Quantum mechanics with more than one particle. Solving for the the hydrogen atom. Nature of the states of atoms.

How to solve real problems

Approximation methods in quantum mechanics.

Taught by

David Miller

Reviews

4.5 rating at edX based on 35 ratings

Start your review of Quantum Mechanics for Scientists and Engineers 1

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.