Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

edX

Topological Quantum Matter

Weizmann Institute of Science via edX

This course may be unavailable.

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!

This advanced course covers the fundamentals of the thriving field of Topological States of Matter. We discuss both theoretical and experimental aspects, and emphasize the physical picture over the technical details. The course is divided to nine units.

The Integer and Fractional Quantm Hall Effects are covered in the first unit, including the concepts of edge states, localization, fractional charges, composite fermions, and non-abelian states.

Topological Superconductivity is covered in the 2nd unit, including the concepts of the Thouless pump, Majorana zero modes, and realizations in one and two dimensions.

Topological Universe on a Graphene Sheet is offered by the 3rd unit, including the concepts of Dirac cones, Klein tunneling and Chern bands, as well as the rich world of twisted bi-layer graphene.

Topological Insulators are covered by the 4th unit, including two- and three- dimensional systems, as well as topological crystalline insulators.

The 5th unit, on Topological Classification , puts all examples of the previous units into a unified framework, introducing the periodic table of gapped topological systems with no topological order.

The 6th unit expands the course into the realm of Gapless Topological Phases , covering Dirac and Weyl semi-metals, both in their bulk and surface.

The 7th unit covers the theoretical tools for Predicting Topological Materials , with an emphasis on Denisty Functional Theory, and the quantities that need to be calculated to probe the topological characteristics of a material.

The 8th unit dives into the abstract world of Topological Order , from the Toric Code all the way to a brief discussion of Topological Quantum Computation.

And finally, the 9th unit describes some Experimental Tools that are of wide use in the study of topological states of matter, and makes connection between measurements and their interpretation.

Syllabus

1. The quantum Hall effect – Prof. Ady Stern

2. Topological superconductivity – Prof. Yuval Oreg, Dr. Yuval Ronen

3. Topological universe on a graphene sheet – Prof. Raquel Queiroz, Prof.

Shahal Ilani, Prof. Erez Berg

4. Topological insulators – Prof. Haim Beidenkopf, Prof. Binghai Yan,

Prof. Ady Stern

5. Topological classification – Prof. Erez Berg

6. Gapless topological phases – Prof. Roni Ilan, Prof. Haim Beidenkopf

7. Material prediction – Prof. Binghai Yan

8. States of topological Order – Prof. Ady Stern, Prof. Erez Berg, Prof.

Yuval Oreg

9. Experimental tools – Prof. Haim Beidenkopf, Dr. Nurit Avraham, Prof.

Moty Heiblum

Taught by

Ady Stern, Haim Beidenkopf, Erez Berg and Yuval Oreg

Reviews

Start your review of Topological Quantum Matter

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.