Learn the most powerful and versatile programming language this summer. In this 2-week course, high school students will learn Python for data science and machine learning.
Overview
Syllabus
Introduction to Programming
- History of Python
- Understanding Hardware
- Anaconda Distribution
- Jupyter Notebook Fundementals
- Writing First Program (“Hello World”)
Terminal Commands
- Navigate & Manipulate Directory Strcutres
- Edit Files
- Basic Scripting
Python Fundamentals
- Data Types
- Operators
- Expression
- Indexing & Slicing
- Strings
- Conditionals
- Functions
- Control Flow
- Nested Loops
- Sets & Dictionaries
Data Science Fundementals
- Import Data
- Functions
- Basic Data Tool
Advanced Python Fundementals
- Lists
- Mutating Operations
- Tuples, Sets, Dictionaries
- Loops
- Control Flow
- List Comprehension
- Error Handeling
Processing
- String Methods
- Read & Write to Text Files
- Natrual Language Processing
- Mini Project
Object Oriented Programming
- Classes
- Constrcutors
- Object Methods
- Writing Modules
- Advanced Scripting
- Terminal & Socket Connection
Numerical Python
- Arrays
- Universal Functions
- Concatenating, Indexing, Slicing
- Arithmetic & Boolean Operations
Python Data Analysis:Pandas 1
- Data Series
- Data Frames
- Import CSV & Excel Files
- Organize Data Frames
- Data Manipulation
- Descriptive Statstics
Advanced Python
- File Input
- User Input
- List Comprehension
- Packages
Data Analysis
- Cleaning Data
- Filtering Data
- Advanced Grouping
- Pivot Tables
Data Visualization
- Plotting with Matplotlib
- Scatter Plots
- Histograms & Bar Plots
- Custom Visualizations
Machine Learning Fundamentals
Basic Regression Analysis
- Linear Regression
- Mean squared error
- Training set vs Test set
- Cross validation
Advanced Regression Analysis
- Multi-linear regression
- Feature engineering
- Overfitting
Classification
Logistic Regression
- Regression vs Classification
- Logistic Regression
- Sigmoid function
K-nearest Neighbors
- K-nearest neighbors
- Model-based vs memory-based
- Parametric vs non-parametric
- Evaluating performance
Final Project
Details
- Curate Data
- Import, Clean, and Merge Data
- Analyze Data
- Visualize Data
- Present Results