Türkçe
Ders çok değişkenli fonksiyonlardaki iki derslik dizinin ikincisidir. Birinci ders türev ve entegral kavramlarını geliştirmekte ve bu konulardaki problemleri temel çözme yöntemlerini sunmaktadır. Bu ders, birinci derste geliştirilen temeller üzerine daha ileri konuları işlemekte ve daha kapsamlı uygulamalar ve çözümlü örnekler sunmaktadır. Ders gerçek yaşamdan gelen uygulamaları da tanıtmaya önem veren “içerikli yaklaşımla” tasarlanmıştır.
Konuların sunumunda “ne?” ve “nasıl?” sorularının yanısı sıra, “neden?” ve “nerede?” sorularına da yanıt aranacaktır. İlk iki soru “tanım” ve “kanıt”ları oluşturuyor. Diğer iki soru da, konuların nereden geldiğini ve nerede kullanılacağına yanıt veriyor.
Matematikte konuları bir düzen içinde hazır cevaplar vererek geliştirmek (Aristo yöntemi) önemlidir. Bunun yanı sıra sorular sorup, öğrenciyle birlikte yanıtlamak da öğrenim için etkin bir yöntem (Sokrat yöntemi). Buradaki sunumda uygun durumlarda Sokrat yönteminden yararlanmaya özen gösterilmektedir.
Niçin türev ve entegral? Yaşamın iki önemli göstergesi değişim ve birikimdir. Değişim farklarla ve birikim de toplamalarla tanımlanır. Özünde, diferansiyel hesap, ilkokuldan beri öğrenip uyguladığımız çıkarma ve toplama işlemlerinin bir uzantısıdır. Diferansiyel hesaptaki yeni kavram anlık değişim ve değişken girdilerden oluşan birikimin belirlenebilmesidir. Bu iki kavram sonsuz küçük değerleri gerektirir. İstenen anlık değişiklik ve birikim sonsuz küçüklerin sıfır olduğu limitte ulaşılan değerlerdir. Limit diferansiyel hesabın dayandığı temel kavramdır.
Bir fonksiyon, bir girdi (bağımsız değişken) ile çıktı (bağımlı değişken) arasındaki ilişkidir. Bağımlı değişkendeki değişimin, bağımsız değişkendeki değişime oranı “türev” kavramını getirir. Birikim de, örneğin kütleyi, elektrik yükünü, enerjiyi, uzunluğu, alanı, hacmi veren fonksiyonların bağımsız değişkendeki sonsuz küçük değerlerle ağırlıklı toplamıdır. Bu işlem “entegral” kavramıdır. İlkokuldan beri toplama ve çıkarmanın birbirinin tersi ve tamamlayıcısı olduğunu biliyor ve kullanıyoruz. Bu ilişki türev ve entegralde de geçerlidir. Diferansiyel hesabın iki “temel teoremi” bu ilişkiyi kanıtlar: Bir fonksiyonun türevinin entegrali, başlangıçtaki fonksiyonu verir. Benzer olarak, bir fonksiyonun entegralinin türevi de başlangıçtaki fonksiyonu verir. Bu temel sonuçlar “Tek değişkenli fonksiyonların diferansiyel hesabı” dersinden biliniyor. Bu ders aynı konuları temel alarak, kavram ve hesaplama yöntemlerini çok değişkenli fonksiyonlara geliştiriyor.
Niçin çok değişkenli fonksiyonlar? Çünkü yaşamın gerçek konuları bir, iki veya üç konum ve bir de zaman değişkeniyle belirleniyor. Ders tek değişkenli fonksiyonlarda öğrendiklerimizin üzerine yapılanıyor. Her yeni konuya başlarken, tek değişkenli fonksiyonlardaki eşdeğer durum hatırlatılacaktır. Bu nedenle önceki dersin konularını hatırlatma, öğrenciye eksik bildiklerini tamamlama ve bildiklerini pekiştirme olanağını da veriyor. Dersin sonunda öğrenciler çok boyutta düşünebilme becerisini geliştirecek, çevreyi ve insan yapısı olan teknolojiyi gerçekçi anlamda kavrayabilecektir.
(Kaynak: Attila Aşkar, “Çok değişkenli fonksiyonlarda türev ve entegral”. Bu kitap dört ciltlik dizinin ikinci cildidir. Dizinin diğer kitapları Cilt 1 “Tek değişkenli fonksiyonlarda türev ve entegral”, Cilt 3: “Doğrusal cebir” ve Cilt 4: “Diferansiyel denklemler” dir.
English
The course is the second of the two course sequence of calculus of multivariable functions. The first course develops the concepts of derivatives and integrals of functions of several variables, and the basic tools for doing the relevant calculations. This course builds on the foundations of the first course and introduces more advanced topics along with more advanced applications and solved problems. The course is designed with a “content-based” approach, i. e. by solving examples, as many as possible from real life situations.
The “why” and “where“ of the topics are discussed, as much as the “what” and the “how”. The answers to the latter are the “definitions” and “proofs”, while the answers to the first two tell the reason for studying a topic, and the areas where such ideas are used.
The transfer of knowledge through an organized deductive process plays an important role in mathematics (Aristotelian approach). An interactive communication between the teacher and the student through posing questions and answering them leads to an effective method (Socratian method). The design of this course will benefit from the latter whenever feasible.
Why do we study derivatives and integrals? Because derivatives express change, and integrals define the cumulative results of many inputs. Change and growth through time or space are two basic aspects of life. Change is expressed with the difference between two situations, and the cumulative result of many inputs is an additive process. Thus basically, calculus is an extension of what we all learn as early as first grade as addition and subtraction. Calculus enables us to define and calculate instantaneous changes and growth by continuously varying inputs. Instantaneity of the changes and variability of the inputs are handled by infinitesimal quantities. The final results are obtained in the limit where the infinitesimal changes become zero. The limit is the central concept of calculus.
A function defines the relationship between the inputs, which are the independent variables, and outputs which are the dependent variables. The ratio of the infinitesimal changes in the dependent variable to those of the independent variable leads to the concept of the “derivative”. Similarly, the cumulative outputs of entities such as matter, energy, area, surface, volume, etc. are calculated by the sum of the dependent variable weighted by the changes in the independent variable. This operation leads to the concept of “integral”. Just like in Grade One, where we observed that addition and subtraction are the inverses of each other, so are integral and derivative. This complementarity between the derivative and integral is expressed by the two “fundamental theorems of calculus”. All this is studied in the “Calculus of Single Variable Functions”.
Why multivariables? Because real life problems involve several variables. Our environment is defined by three space variables and phenomena evolve in terms of a fourth which is time. People- made phenomena require many more variables. The course offered here is built on the knowledge of calculus of single variable functions and extends the concepts and techniques to multivariable functions. The concepts and techniques are, in most cases, natural extensions and generalizations from those in single variable functions. Hence, each topic will start the review of the fundamental concepts and calculation techniques from the calculus of one variable functions. This review is an opportunity to supplement what a student missed in the earlier course on single variables, while advancing into relevant problems from real life that involve more than one variable.
(Source: Attila Aşkar, Calculus of Multivariable Functions, Volume 2 of the set of Vol1: Calculus of Single Variable Functions, Volume 3: Linear Algebra and Volume 4: Differential Equations. All available online starting on January 6, 2014)