Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

University of Washington

머신 러닝 기초: 사례 연구 접근 방식

University of Washington via Coursera

Overview

데이터가 있고 그 데이터로 무엇을 알 수 있는지 궁금하신가요? 머신 러닝으로 비즈니스를 개선할 수 있는 핵심 방법을 더 깊이 이해해야 하나요? 회귀 및 분류에서 딥 러닝 및 추천 시스템까지 어떤 내용으로든 전문가와 대화할 수 있기를 원하시나요? 이 과정에서는 일련의 실제 사례 연구를 통해 머신 러닝에 대한 실무 경험을 얻을 수 있습니다. 첫 번째 과정이 끝나면 주택 수준 특성을 기반으로 주택 가격을 예측하고, 사용자 리뷰에서 감정을 분석하고, 관심 문서를 검색하고, 제품을 추천하고, 이미지를 검색하는 방법을 배우게 됩니다. 이러한 사용 사례에 대한 실습을 통해 광범위한 영역에서 머신 러닝 방법을 적용할 수 있습니다. 이 첫 번째 과정은 머신 러닝 방법을 블랙박스로 취급합니다. 이 추상화를 통해 관심 있는 작업을 이해하고, 이러한 작업을 머신 러닝 도구와 일치시키고, 출력 품질을 평가하는 데 집중할 것입니다. 후속 과정에서는 모델과 알고리즘을 검토하여 이 블랙박스의 구성 요소를 자세히 알아볼 것입니다. 이 조각들은 결합하여 지능형 애플리케이션 개발에 사용할 머신 러닝 파이프라인을 형성합니다. 학습 결과: 이 과정을 마치면 다음을 수행할 수 있습니다. -실제로 머신 러닝의 잠재적 애플리케이션을 식별합니다. -회귀, 분류 및 클러스터링을 통해 가능해진 분석의 핵심 차이를 설명합니다. -잠재적 애플리케이션에 적합한 머신 러닝 작업을 선택합니다. -회귀, 분류, 클러스터링, 검색, 추천 시스템 및 딥 러닝을 적용합니다. -머신 러닝 모델에 대한 입력 정보 역할을 하는 특성으로 데이터를 제시합니다. -각 작업에 대한 관련 오류 지표 측면에서 모델 품질을 평가합니다. -새로운 데이터를 분석하기 위해 모델에 맞는 데이터 세트를 활용합니다. -머신 러닝을 핵심으로 사용하는 엔드 투 엔드 애플리케이션을 구축합니다. -Python에서 이러한 기술을 구현합니다.

Syllabus

  • 인사말
    • 머신 러닝(ML)은 어디에나 있지만 종종 은밀하게 작동합니다.

      이 전문화 과정에 대한 소개는 머신 러닝의 힘과 수료 시 개인적으로 개발 및 배포할 수 있는 다양한 지능형 애플리케이션에 대한 통찰력을 제공합니다.

      또한 우리가 누구인지, 어떻게 여기까지 왔는지, 지능형 애플리케이션의 미래에 대한 관점에 대해서도 논의합니다.
  • 회귀: 주택 가격 예측
    • 이번 주에는 데이터에서 예측을 수행하는 첫 번째 지능형 애플리케이션을 구축할 것입니다.

      우리는 첫 번째 사례 연구의 맥락에서 이 아이디어를 탐구하여 주택 가격을 예측할 것입니다. 여기서 입력 특성(면적, 침실 및 욕실 수 등)에서 연속적인 값(가격)을 예측하는 모델을 생성합니다.

      이는 회귀를 적용할 수 있는 많은 분야 중 하나일 뿐입니다. 다른 적용 분야는 의학의 건강 결과, 금융의 주가, 고성능 컴퓨팅의 전력 사용량 예측부터 유전자 발현에 중요한 조절기 분석에 이르기까지 다양합니다.

      또한 예측 모델의 성능을 분석하고 Jupyter 노트북을 사용하여 실제로 회귀를 구현하는 방법을 검토합니다.
  • 분류: 감정 분석
    • 한 사람이 쓴 짧은 리뷰에서 경험에 대해 긍정적인 감정을 느꼈는지 부정적인 감정을 느꼈는지 어떻게 추측합니까? 감정을 분석하는 두 번째 사례 연구에서는 입력 특성(리뷰 텍스트, 사용자 프로필 정보 등)에서 클래스(긍정/부정 감정)를 예측하는 모델을 생성합니다. 이 작업은 분류의 예입니다. 광고 타겟팅, 스팸 감지, 의료 진단 및 이미지 분류 등의 광범위한 적용 분야에서 가장 널리 사용되는 머신 러닝 영역입니다. 분류기의 정확도를 분석하고 Jupyter 노트북에서 실제 분류기를 구현하며 캡스톤에 구축 및 배포할 지능형 애플리케이션의 핵심 부분을 먼저 살펴봅니다.
  • 클러스터링 및 유사성: 문서 검색
    • 독자가 특정 뉴스 기사에 관심이 있으며 추천할 만한 유사 기사를 찾고 싶어합니다. 유사성에 대한 올바른 개념은 무엇입니까? 문서를 자동으로 검색하여 가장 유사한 문서를 찾으려면 어떻게 합니까? 처음에 문서를 어떻게 정량적으로 표현합니까?

      이 세 번째 사례 연구인 문서 검색에서는 다양한 문서 표현과 가장 유사한 하위 집합을 검색하는 알고리즘을 검사합니다. 또한 유사성(예: 문서 주제)에 의해 문서를 자동으로 그룹화하는 문서의 구조화된 표현을 고려합니다.

      실제로 Jupyter 노트북에서 Wikipedia 항목에 대한 지능형 문서 검색 시스템을 구축합니다.
  • 제품 추천
    • Amazon이 개인화된 제품 추천을 어떻게 구성하는지 궁금하십니까? Netflix에서 시청할 영화를 제안하는 방법은 무엇입니까? Pandora는 스트리밍할 다음 노래를 어떻게 선택합니까? Facebook이나 LinkedIn은 당신이 연결할 수 있는 사람들을 어떻게 찾습니까? 개인화된 콘텐츠를 위한 이러한 모든 기술의 근간에는 협업 필터링이라는 것이 있습니다.

      다양한 기술을 사용하여 이러한 추천 시스템을 구축하는 방법을 배우고 장단점을 살펴봅니다.

      우리가 조사하는 한 가지 방법은 사용자 및 제품의 특성을 학습하여 권장 사항을 형성하는 행렬 분해입니다. Jupyter 노트북에서 이러한 기술을 사용하여 실제 노래 추천 시스템을 구축합니다.
  • 딥 러닝: 이미지 검색
    • 딥 러닝이 머신 러닝에서 가장 유망한 기술 중 하나로 전 세계적으로 뉴스 거리가 되고 있다는 소식을 들었을 것입니다. 모든 산업은 이미지 태깅, 객체 인식, 음성 인식, 텍스트 분석과 같은 작업을 포함하여 딥 러닝 잠재력을 실현하기 위해 리소스를 할애하고 있습니다.마지막 사례 연구인 이미지 검색에서는 신경망층이 이미지 분류 및 검색 작업에서 인상적인 성능을 제공하는 매우 기술적인(비선형) 특성을 제공하는 방법을 배웁니다. 그런 다음 모델을 학습할 데이터가 거의 없는 경우에도 딥 러닝을 매우 쉽게 사용할 수 있는 전이 학습 기술인 심층 특성을 구성합니다. iPhython 노트북을 사용하여 딥 러닝을 통해 이미지 분류기와 지능형 이미지 검색 시스템을 구축합니다.
  • 맺음말
    • 과정이 끝나면 머신 러닝 도구를 서비스로 전환하는 마지막 단계인 배포에 대해 설명합니다. 또한 머신 러닝 분야가 여전히 직면하고 있는 몇 가지 미결 과제와 머신 러닝이 어디로 향하고 있는지도 논의합니다. 나머지 전문화 과정에 대한 개요와 머신 러닝을 발전시키면서 우리 앞에 놓인 놀라운 지능형 애플리케이션으로 마무리합니다.

Taught by

Nora Duong

Reviews

Start your review of 머신 러닝 기초: 사례 연구 접근 방식

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.