Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Massachusetts Institute of Technology

Computational Science and Engineering I

Massachusetts Institute of Technology via MIT OpenCourseWare

Overview

This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: differential equations of equilibrium; Laplace's equation and potential flow; boundary-value problems; minimum principles and calculus of variations; Fourier series; discrete Fourier transform; convolution; and applications. Note: This course was previously called "Mathematical Methods for Engineers I."

Syllabus

  • Course Introduction
  • Lecture 1: Four Special Matrices
  • Recitation 1: Key Ideas of Linear Algebra
  • Transcript – Lecture 1
  • Transcript – Recitation 1
  • Lecture 2: Differential Eqns and Difference Eqns
  • Recitation 2
  • Transcript – Lecture 2
  • Transcript – Recitation 2
  • Lecture 3: Solving a Linear System
  • Recitation 3
  • Transcript – Lecture 3
  • Transcript – Recitation 3
  • Lecture 4: Delta Function Day
  • Recitation 4
  • Transcript – Lecture 4
  • Transcript – Recitation 4
  • Lecture 5: Eigenvalues (Part 1)
  • Recitation 5
  • Transcript – Lecture 5
  • Transcript – Recitation 5
  • Lecture 6: Eigen Values (part 2) and Positive Definite (part 1)
  • Recitation 6
  • Transcript – Lecture 6
  • Transcript – Recitation 6
  • Lecture 7: Positive Definite Day
  • Recitation 7
  • Transcript – Lecture 7
  • Transcript – Recitation 7
  • Lecture 8: Springs and Masses
  • Recitation 8
  • Transcript – Lecture 8
  • Transcript – Recitation 8
  • Lecture 9: Oscillation
  • Recitation 9
  • Transcript – Lecture 9
  • Transcript – Recitation 9
  • Lecture 10: Finite Differences in Time
  • Recitation 10
  • Transcript – Lecture 10
  • Transcript – Recitation 10
  • Lecture 11: Least Squares (part 2)
  • Recitation 11
  • Transcript – Lecture 11
  • Transcript – Recitation 11
  • Lecture 12: Graphs and Networks
  • Recitation 12
  • Transcript – Lecture 12
  • Transcript – Recitation 12
  • Lecture 13: Kirchhoff's Current Law
  • Recitation 13
  • Transcript – Lecture 13
  • Transcript – Recitation 13
  • Lecture 14: Exam Review
  • Transcript – Lecture 14
  • Lecture 15: Trusses and A^(T)CA
  • Transcript – Lecture 15
  • Lecture 16: Trusses (part 2)
  • Transcript – Lecture 16
  • Lecture 17: Finite Elements in 1D (part 1)
  • Transcript – Lecture 17
  • Lecture 18: Finite Elements in 1D (part 2)
  • Transcript – Lecture 18
  • Lecture 19: Quadratic/Cubic Elements
  • Transcript – Lecture 19
  • Lecture 20: Element Matrices; 4th Order Bending Equations
  • Transcript – Lecture 20
  • Lecture 21: Boundary Conditions, Splines, Gradient, Divergence
  • Transcript – Lecture 21
  • Lecture 22: Gradient and Divergence
  • Transcript – Lecture 22
  • Lecture 23: Laplace's Equation
  • Transcript – Lecture 23
  • Lecture 24: Laplace's Equation (part 2)
  • Transcript – Lecture 24
  • Lecture 25: Fast Poisson Solver (part 1)
  • Transcript – Lecture 25
  • Lecture 26: Fast Poisson Solver (part 2); Finite Elements in 2D
  • Transcript – Lecture 26
  • Lecture 27: Finite Elements in 2D (part 2)
  • Transcript – Lecture 27
  • Lecture 28: Fourier Series (part 1)
  • Transcript – Lecture 28
  • Lecture 29: Fourier Series (part 2)
  • Transcript – Lecture 29
  • Lecture 30: Discrete Fourier Series
  • Transcript – Lecture 30
  • Lecture 31: Fast Fourier Transform, Convolution
  • Transcript – Lecture 31
  • Lecture 32: Convolution (part 2), Filtering
  • Transcript – Lecture 32
  • Lecture 33: Filters, Fourier Integral Transform
  • Transcript – Lecture 33
  • Lecture 34: Fourier Integral Transform (part 2)
  • Transcript – Lecture 34
  • Lecture 35: Convolution Equations: Deconvolution
  • Transcript – Lecture 35
  • Lecture 36: Sampling Theorem
  • Transcript – Lecture 36

Taught by

Prof. Gilbert Strang

Reviews

Start your review of Computational Science and Engineering I

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.