Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Seoul National University

Mathematical understanding of uncertainty

Seoul National University via edX

Overview

The first part of the series (three weeks) discusses the basics of probability theory such as the mathematical formulation of probability, random variables, expectation, and variance in a creative way as a means to quantify uncertainty.

The second part of the series (five weeks) introduces a few universal principles of probability theory. Standard theorems in probability theory such as the law of large numbers and the central limit theorems are introduced as fundamental examples of universal principles, and hence, are discussed from a unique perspective. These universal principles are used to explain uncertainty in the real-world, and numerous interesting examples are introduced for illustration.

The third part of the series (four weeks) introduces the concept of Markov chain and then discusses various randomized algorithms as examples of Markov chains. For example, riffle shuffle of playing cards, Markov chain Monte Carlo, and deep learning algorithms are discussed based on the modern theory of Markov chains.

The lecture series requires knowledge of calculus, but knowledge of higher mathematics and probability is not a pre-requisite.

Syllabus

Lecture 1. Uncertainty: Control vs Exploit

1) A toy example

2) Control the uncertainty

3) Exploit the uncertainty

Lecture 2. Quantification of Uncertainty (1): Probability and Random Variables

1) Mathematical formulation of probability

2) Random variables

3) Independence

Lecture 3. Quantification of Uncertainty (2): Expectation and Variance

1) Expectation

2) Variance and standard deviation

3) Applications

Lecture 4. Universal Principle (1): Law of large numbers

1) Introduction to universality

2) Law of large numbers

3) Proof of law of large numbers

4) Applications

Lecture 5. Universal Principle (2): Central limit theorem

1) Central limit theorem

2) Applications to statistics

Lecture 6. Universal Principle (3): More on fluctuation

1) Heavy-tailed random variables

2) Large deviation principles

Lecture 7. Universal Principle (4): Random processes

1) Introduction to random processes

2) Simple random walk on a line

3) Applications to gambling

Lecture 8. Universal Principle (5): Universality of random processes

1) Universality in random walks

2) Galton-Watson tree

Lecture 9. How to use uncertainty? (1): Introduction to Markov Chains

1) Markov processes

2) Markov chains

3) Examples

Lecture 10. How to use uncertainty? (2): Universal principles of Markov chains

1) Stationary distribution

2) Universal principles for Markov chains

Lecture 11. How to use uncertainty? (3): MCMC and Cutoff phenomenon

1) Markov chain Monte Carlo (MCMC)

2) Markov chain mixing theory

3) Cutoff phenomenon

Lecture 12. How to use uncertainty? (4): Stochastic optimizations and deep learning

1) Gradient descent

2) Stochastic gradient descent

3) Mini-batch gradient descent

Taught by

Insuk Seo, Seonwoo Kim and Jeeho Ryu

Reviews

Start your review of Mathematical understanding of uncertainty

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.