Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Coursera

Machine Learning Algorithms: Supervised Learning Tip to Tail

Alberta Machine Intelligence Institute via Coursera

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
This course takes you from understanding the fundamentals of a machine learning project. Learners will understand and implement supervised learning techniques on real case studies to analyze business case scenarios where decision trees, k-nearest neighbours and support vector machines are optimally used. Learners will also gain skills to contrast the practical consequences of different data preparation steps and describe common production issues in applied ML. To be successful, you should have at least beginner-level background in Python programming (e.g., be able to read and code trace existing code, be comfortable with conditionals, loops, variables, lists, dictionaries and arrays). You should have a basic understanding of linear algebra (vector notation) and statistics (probability distributions and mean/median/mode). This is the second course of the Applied Machine Learning Specialization brought to you by Coursera and the Alberta Machine Intelligence Institute.

Syllabus

  • Classification using Decision Trees and k-NN
    • Welcome to Supervised Learning, Tip to Tail! This week we'll go over the basics of supervised learning, particularly classification, as well as teach you about two classification algorithms: decision trees and k-NN. You'll get started programming on the platform through Jupyter notebooks and start to familiarize yourself with all the issues that arise when using machine learning for classification.
  • Functions for Fun and Profit
    • Welcome to the second week of the course! In this week you'll learn all about regression algorithms, the other side of supervised learning. We'll introduce you to the idea of finding lines, optimization criteria, and all the associated issues. Through regression we'll see the interactions between model complexity and accuracy, and you'll get a first taste of how regression and classification might relate.
  • Regression for Classification: Support Vector Machines
    • This week we'll be diving straight in to using regression for classification. We'll describe all the fundamental pieces that make up the support vector machine algorithms, so that you can understand how many seemingly unrelated machine learning algorithms tie together. We'll introduce you to logistic regression, neural networks, and support vector machines, and show you how to implement two of those.
  • Contrasting Models
    • Now at the tail end of the course, we're going to go over how to know how well your model is actually performing and what you can do to get even better performance from it. We'll review assessment questions particular to regression and classification, and introduce some other tools that really help you analyze your model performance. The topics covered this week aim to give you confidence in your models, so you're ready to unlock the power of machine learning for your business goals.

Taught by

Anna Koop

Reviews

4.7 rating at Coursera based on 411 ratings

Start your review of Machine Learning Algorithms: Supervised Learning Tip to Tail

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.