Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

LinkedIn Learning

Neural Networks and Convolutional Neural Networks Essential Training

via LinkedIn Learning

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Take a deep dive into neural networks and convolutional neural networks, two key concepts in the area of machine learning.

Syllabus

Introduction
  • Welcome
  • What you should know
  • Using the exercise files
1. Introduction to Neural Networks
  • Neurons and artificial neurons
  • Gradient descent
  • The XOR challenge and solution
  • Neural networks
2. Components of Neural Networks
  • Activation functions
  • Backpropagation and hyperparameters
  • Neural network visualization
3. Neural Network Implementation in Keras
  • Understanding the components in Keras
  • Setting up a Microsoft account on Azure
  • Introduction to MNIST
  • Preprocessing the training data
  • Preprocessing the test data
  • Building the Keras model
  • Compiling the neural network model
  • Training the neural network model
  • Accuracy and evaluation of the neural network model
4. Convolutional Neural Networks
  • Convolutions
  • Zero padding and pooling
5. Convolutional Neural Networks in Keras
  • Preprocessing and loading of data
  • Creating and compiling the model
  • Training and evaluating the model
6. Enhancements to Convolutional Neural Networks (CNNs)
  • Enhancements to CNNs
  • Image augmentation in Keras
7. ImageNet
  • ImageNet challenge
  • Working with VGG16
Conclusion
  • Next steps

Taught by

Jonathan Fernandes

Reviews

4.6 rating at LinkedIn Learning based on 530 ratings

Start your review of Neural Networks and Convolutional Neural Networks Essential Training

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.