Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Machine learning and artificial intelligence hold the potential to transform healthcare and open up a world of incredible promise. But we will never realize the potential of these technologies unless all stakeholders have basic competencies in both healthcare and machine learning concepts and principles.
This course will introduce the fundamental concepts and principles of machine learning as it applies to medicine and healthcare. We will explore machine learning approaches, medical use cases, metrics unique to healthcare, as well as best practices for designing, building, and evaluating machine learning applications in healthcare.
The course will empower those with non-engineering backgrounds in healthcare, health policy, pharmaceutical development, as well as data science with the knowledge to critically evaluate and use these technologies.
Co-author: Geoffrey Angus
Contributing Editors:
Mars Huang
Jin Long
Shannon Crawford
Oge Marques
In support of improving patient care, Stanford Medicine is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team. Visit the FAQs below for important information regarding 1) Date of the original release and expiration date; 2) Accreditation and Credit Designation statements; 3) Disclosure of financial relationships for every person in control of activity content.
Syllabus
- Why machine learning in healthcare?
- Concepts and Principles of machine learning in healthcare part 1
- Concepts and Principles of machine learning in healthcare part 2
- Evaluation and Metrics for machine learning in healthcare
- Strategies and Challenges in Machine Learning in Healthcare
- Best practices, teams, and launching your machine learning journey
- Foundation models (Optional Content)
- Course Conclusion
Taught by
Matthew Lungren and Serena Yeung