Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

freeCodeCamp

Big O Notation - Full Course

via freeCodeCamp

Overview

Dive into a comprehensive course on Big O Notation and its application in Software Engineering. Learn to understand and apply this crucial concept for describing algorithm efficiency in terms of time and memory usage. Explore various time complexities including O(n^2), O(n^3), O(log n), O(n log n), O(2^n), and O(n!). Gain practical insights through explanations of recursive and iterative approaches, binary search implementation, and merge sort coding. Delve into space complexity and avoid common mistakes in algorithm analysis. Master the skills to evaluate and optimize code performance, essential for any software engineer.

Syllabus

) Intro.
) What Is Big O?.
) O(n^2) Explanation.
) O(n^3) Explanation.
) O(log n) Explanation Recursive.
) O(log n) Explanation Iterative.
) O(log n) What Is Binary Search?.
) O(log n) Coding Binary Search.
) O(n log n) Explanation.
) O(n log n) Coding Merge Sort.
) O(n log n) Merge Sort Complexity Deep Dive.
) O(2^n) Explanation With Fibonacci.
) O(n!) Explanation.
) Space Complexity & Common Mistakes.
) End.

Taught by

freeCodeCamp.org

Reviews

Start your review of Big O Notation - Full Course

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.