Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

University of California, Berkeley

Introduction to Apache Spark

University of California, Berkeley via edX

This course may be unavailable.

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!

Spark is rapidly becoming the compute engine of choice for big data. Spark programs are more concise and often run 10-100 times faster than Hadoop MapReduce jobs. As companies realize this, Spark developers are becoming increasingly valued.

This statistics and data analysis course will teach you the basics of working with Spark and will provide you with the necessary foundation for diving deeper into Spark. You’ll learn about Spark’s architecture and programming model, including commonly used APIs. After completing this course, you’ll be able to write and debug basic Spark applications. This course will also explain how to use Spark’s web user interface (UI), how to recognize common coding errors, and how to proactively prevent errors. The focus of this course will be Spark Core and Spark SQL.

This course covers advanced undergraduate-level material. It requires a programming background and experience with Python (or the ability to learn it quickly). All exercises will use PySpark (the Python API for Spark), but previous experience with Spark or distributed computing is NOT required. Students should take this Python mini-quiz before the course and take this Python mini-course if they need to learn Python or refresh their Python knowledge.

Taught by

Anthony D. Joseph and Jon Bates

Reviews

3.6 rating, based on 9 Class Central reviews

Start your review of Introduction to Apache Spark

  • More of a paid tutorial than an actual course. It's ok to say that the Spark approach is better than the alternatives, but it's just too much. Other than that, the actual contents of the lectures are ok (although shallow), but quizzes are terrible…
  • Stephane Mysona
  • Profile image for Tejas Dharamsi
    Tejas Dharamsi
  • Piotr Dziuba
  • Alvaro Martin Orive

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.