This course will show you how to integrate spatial data into your Python Data Science workflow.
A good proportion of the data out there in the real world is inherently spatial. From the population recorded in the national census, to every shop in your neighborhood, the majority of datasets have a location aspect that you can exploit to make the most of what they have to offer. This course will show you how to integrate spatial data into your Python Data Science workflow. You will learn how to interact with, manipulate and augment real-world data using their geographic dimension. You will learn to read tabular spatial data in the most common formats (e.g. GeoJSON, shapefile, geopackage) and visualize them in maps. You will then combine different sources using their location as the bridge that puts them in relation to each other. And, by the end of the course, you will be able to understand what makes geographic data unique, allowing you to transform and repurpose them in different contexts.
A good proportion of the data out there in the real world is inherently spatial. From the population recorded in the national census, to every shop in your neighborhood, the majority of datasets have a location aspect that you can exploit to make the most of what they have to offer. This course will show you how to integrate spatial data into your Python Data Science workflow. You will learn how to interact with, manipulate and augment real-world data using their geographic dimension. You will learn to read tabular spatial data in the most common formats (e.g. GeoJSON, shapefile, geopackage) and visualize them in maps. You will then combine different sources using their location as the bridge that puts them in relation to each other. And, by the end of the course, you will be able to understand what makes geographic data unique, allowing you to transform and repurpose them in different contexts.