Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

DataCamp

Working with Dates and Times in Python

via DataCamp

Overview

Learn how to work with dates and times in Python.

You'll probably never have a time machine, but how about a machine for analyzing time? As soon as time enters any analysis, things can get weird. It's easy to get tripped up on day and month boundaries, time zones, daylight saving time, and all sorts of other things that can confuse the unprepared. If you're going to do any kind of analysis involving time, you’ll want to use Python to sort it out. Working with data sets on hurricanes and bike trips, we’ll cover counting events, figuring out how much time has elapsed between events and plotting data over time. You'll work in both standard Python and in Pandas, and we'll touch on the dateutil library, the only timezone library endorsed by the official Python documentation. After this course, you'll confidently handle date and time data in any format like a champion.

Syllabus

  • Dates and Calendars
    • Hurricanes (also known as cyclones or typhoons) hit the U.S. state of Florida several times per year. To start off this course, you'll learn how to work with date objects in Python, starting with the dates of every hurricane to hit Florida since 1950. You'll learn how Python handles dates, common date operations, and the right way to format dates to avoid confusion.
  • Combining Dates and Times
    • Bike sharing programs have swept through cities around the world -- and luckily for us, every trip gets recorded! Working with all of the comings and goings of one bike in Washington, D.C., you'll practice working with dates and times together. You'll parse dates and times from text, analyze peak trip times, calculate ride durations, and more.
  • Time Zones and Daylight Saving
    • In this chapter, you'll learn to confidently tackle the time-related topic that causes people the most trouble: time zones and daylight saving. Continuing with our bike data, you'll learn how to compare clocks around the world, how to gracefully handle "spring forward" and "fall back," and how to get up-to-date timezone data from the dateutil library.
  • Easy and Powerful: Dates and Times in Pandas
    • To conclude this course, you'll apply everything you've learned about working with dates and times in standard Python to working with dates and times in Pandas. With additional information about each bike ride, such as what station it started and stopped at and whether or not the rider had a yearly membership, you'll be able to dig much more deeply into the bike trip data. In this chapter, you'll cover powerful Pandas operations, such as grouping and plotting results by time.

Taught by

Max Shron

Reviews

4.4 rating at DataCamp based on 36 ratings

Start your review of Working with Dates and Times in Python

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.