Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

DataCamp

Understanding Data Visualization

via DataCamp

Overview

An introduction to data visualization with no coding involved.

Visualizing data using charts, graphs, and maps is one of the most impactful ways to communicate complex data. In this course, you’ll learn how to choose the best visualization for your dataset, and how to interpret common plot types like histograms, scatter plots, line plots and bar plots. You'll also learn about best practices for using colors and shapes in your plots, and how to avoid common pitfalls. Through hands-on exercises, you'll visually explore over 20 datasets including global life expectancies, Los Angeles home prices, ESPN's 100 most famous athletes, and the greatest hip-hop songs of all time.

Syllabus

  • Visualizing distributions
    • In this chapter you’ll learn the value of visualizations, using real-world data on British monarchs, Australian salaries, Panamanian animals, and US cigarette consumption, to graphically represent the spread of a variable using histograms and box plots.
  • Visualizing two variables
    • You’ll learn how to interpret data plots and understand core data visualization concepts such as correlation, linear relationships, and log scales. Through interactive exercises, you’ll also learn how to explore the relationship between two continuous variables using scatter plots and line plots. You'll explore data on life expectancies, technology adoption, COVID-19 coronavirus cases, and Swiss juvenile offenders. Next you’ll be introduced to two other popular visualizations—bar plots and dot plots—often used to examine the relationship between categorical variables and continuous variables. Here, you'll explore famous athletes, health survey data, and the price of a Big Mac around the world.
  • The color and the shape
    • It’s time to make your insights even more impactful. Discover how you can add color and shape to make your data visualizations clearer and easier to understand, especially when you find yourself working with more than two variables at the same time. You'll explore Los Angeles home prices, technology stock prices, math anxiety, the greatest hiphop songs, scotch whisky preferences, and fatty acids in olive oil.
  • 99 problems but a plot ain't one of them
    • In this final chapter, you’ll learn how to identify and avoid the most common plot problems. For example, how can you avoid creating misleading or hard to interpret plots, and will your audience understand what it is you’re trying to tell them? All will be revealed! You'll explore wind directions, asthma incidence, and seats in the German Federal Council.

Taught by

Richie Cotton

Reviews

4.7 rating at DataCamp based on 147 ratings

Start your review of Understanding Data Visualization

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.